Recent advances for quantum classifiers
Abstract Machine learning has achieved dramatic success in a broad spectrum of
applications. Its interplay with quantum physics may lead to unprecedented perspectives for …
applications. Its interplay with quantum physics may lead to unprecedented perspectives for …
Recent advances for quantum neural networks in generative learning
Quantum computers are next-generation devices that hold promise to perform calculations
beyond the reach of classical computers. A leading method towards achieving this goal is …
beyond the reach of classical computers. A leading method towards achieving this goal is …
Generalization in quantum machine learning from few training data
Modern quantum machine learning (QML) methods involve variationally optimizing a
parameterized quantum circuit on a training data set, and subsequently making predictions …
parameterized quantum circuit on a training data set, and subsequently making predictions …
Quantum variational algorithms are swamped with traps
One of the most important properties of classical neural networks is how surprisingly
trainable they are, though their training algorithms typically rely on optimizing complicated …
trainable they are, though their training algorithms typically rely on optimizing complicated …
Theoretical guarantees for permutation-equivariant quantum neural networks
Despite the great promise of quantum machine learning models, there are several
challenges one must overcome before unlocking their full potential. For instance, models …
challenges one must overcome before unlocking their full potential. For instance, models …
Exponential concentration in quantum kernel methods
Abstract Kernel methods in Quantum Machine Learning (QML) have recently gained
significant attention as a potential candidate for achieving a quantum advantage in data …
significant attention as a potential candidate for achieving a quantum advantage in data …
Out-of-distribution generalization for learning quantum dynamics
Generalization bounds are a critical tool to assess the training data requirements of
Quantum Machine Learning (QML). Recent work has established guarantees for in …
Quantum Machine Learning (QML). Recent work has established guarantees for in …
Exponential concentration and untrainability in quantum kernel methods
Kernel methods in Quantum Machine Learning (QML) have recently gained significant
attention as a potential candidate for achieving a quantum advantage in data analysis …
attention as a potential candidate for achieving a quantum advantage in data analysis …
Understanding quantum machine learning also requires rethinking generalization
Quantum machine learning models have shown successful generalization performance
even when trained with few data. In this work, through systematic randomization …
even when trained with few data. In this work, through systematic randomization …
Analytic theory for the dynamics of wide quantum neural networks
Parametrized quantum circuits can be used as quantum neural networks and have the
potential to outperform their classical counterparts when trained for addressing learning …
potential to outperform their classical counterparts when trained for addressing learning …