Decentralized federated learning: Fundamentals, state of the art, frameworks, trends, and challenges

ETM Beltrán, MQ Pérez, PMS Sánchez… - … Surveys & Tutorials, 2023 - ieeexplore.ieee.org
In recent years, Federated Learning (FL) has gained relevance in training collaborative
models without sharing sensitive data. Since its birth, Centralized FL (CFL) has been the …

A survey of distributed optimization

T Yang, X Yi, J Wu, Y Yuan, D Wu, Z Meng… - Annual Reviews in …, 2019 - Elsevier
In distributed optimization of multi-agent systems, agents cooperate to minimize a global
function which is a sum of local objective functions. Motivated by applications including …

Federated learning with partial model personalization

K Pillutla, K Malik, AR Mohamed… - International …, 2022 - proceedings.mlr.press
We consider two federated learning algorithms for training partially personalized models,
where the shared and personal parameters are updated either simultaneously or alternately …

An ensemble of differential evolution and Adam for training feed-forward neural networks

Y Xue, Y Tong, F Neri - Information Sciences, 2022 - Elsevier
Adam is an adaptive gradient descent approach that is commonly used in back-propagation
(BP) algorithms for training feed-forward neural networks (FFNNs). However, it has the …

Decentralized federated averaging

T Sun, D Li, B Wang - IEEE Transactions on Pattern Analysis …, 2022 - ieeexplore.ieee.org
Federated averaging (FedAvg) is a communication-efficient algorithm for distributed training
with an enormous number of clients. In FedAvg, clients keep their data locally for privacy …

Can decentralized algorithms outperform centralized algorithms? a case study for decentralized parallel stochastic gradient descent

X Lian, C Zhang, H Zhang, CJ Hsieh… - Advances in neural …, 2017 - proceedings.neurips.cc
Most distributed machine learning systems nowadays, including TensorFlow and CNTK, are
built in a centralized fashion. One bottleneck of centralized algorithms lies on high …

cpSGD: Communication-efficient and differentially-private distributed SGD

N Agarwal, AT Suresh, FXX Yu… - Advances in Neural …, 2018 - proceedings.neurips.cc
Distributed stochastic gradient descent is an important subroutine in distributed learning. A
setting of particular interest is when the clients are mobile devices, where two important …

Asynchronous decentralized parallel stochastic gradient descent

X Lian, W Zhang, C Zhang, J Liu - … Conference on Machine …, 2018 - proceedings.mlr.press
Most commonly used distributed machine learning systems are either synchronous or
centralized asynchronous. Synchronous algorithms like AllReduce-SGD perform poorly in a …

Achieving geometric convergence for distributed optimization over time-varying graphs

A Nedic, A Olshevsky, W Shi - SIAM Journal on Optimization, 2017 - SIAM
This paper considers the problem of distributed optimization over time-varying graphs. For
the case of undirected graphs, we introduce a distributed algorithm, referred to as DIGing …

Harnessing smoothness to accelerate distributed optimization

G Qu, N Li - IEEE Transactions on Control of Network Systems, 2017 - ieeexplore.ieee.org
There has been a growing effort in studying the distributed optimization problem over a
network. The objective is to optimize a global function formed by a sum of local functions …