Variational quantum algorithms

M Cerezo, A Arrasmith, R Babbush… - Nature Reviews …, 2021 - nature.com
Applications such as simulating complicated quantum systems or solving large-scale linear
algebra problems are very challenging for classical computers, owing to the extremely high …

[HTML][HTML] The variational quantum eigensolver: a review of methods and best practices

J Tilly, H Chen, S Cao, D Picozzi, K Setia, Y Li, E Grant… - Physics Reports, 2022 - Elsevier
The variational quantum eigensolver (or VQE), first developed by Peruzzo et al.(2014), has
received significant attention from the research community in recent years. It uses the …

Noise-induced barren plateaus in variational quantum algorithms

S Wang, E Fontana, M Cerezo, K Sharma… - Nature …, 2021 - nature.com
Abstract Variational Quantum Algorithms (VQAs) may be a path to quantum advantage on
Noisy Intermediate-Scale Quantum (NISQ) computers. A natural question is whether noise …

Cost function dependent barren plateaus in shallow parametrized quantum circuits

M Cerezo, A Sone, T Volkoff, L Cincio… - Nature communications, 2021 - nature.com
Variational quantum algorithms (VQAs) optimize the parameters θ of a parametrized
quantum circuit V (θ) to minimize a cost function C. While VQAs may enable practical …

Diagnosing barren plateaus with tools from quantum optimal control

M Larocca, P Czarnik, K Sharma, G Muraleedharan… - Quantum, 2022 - quantum-journal.org
Abstract Variational Quantum Algorithms (VQAs) have received considerable attention due
to their potential for achieving near-term quantum advantage. However, more work is …

Variational quantum linear solver

C Bravo-Prieto, R LaRose, M Cerezo, Y Subasi… - Quantum, 2023 - quantum-journal.org
Previously proposed quantum algorithms for solving linear systems of equations cannot be
implemented in the near term due to the required circuit depth. Here, we propose a hybrid …

Robust data encodings for quantum classifiers

R LaRose, B Coyle - Physical Review A, 2020 - APS
Data representation is crucial for the success of machine-learning models. In the context of
quantum machine learning with near-term quantum computers, equally important …

Real-and imaginary-time evolution with compressed quantum circuits

SH Lin, R Dilip, AG Green, A Smith, F Pollmann - PRX Quantum, 2021 - APS
The current generation of noisy intermediate-scale quantum computers introduces new
opportunities to study quantum many-body systems. In this paper, we show that quantum …

NISQ computing: where are we and where do we go?

JWZ Lau, KH Lim, H Shrotriya, LC Kwek - AAPPS bulletin, 2022 - Springer
In this short review article, we aim to provide physicists not working within the quantum
computing community a hopefully easy-to-read introduction to the state of the art in the field …

Solving nonlinear differential equations with differentiable quantum circuits

O Kyriienko, AE Paine, VE Elfving - Physical Review A, 2021 - APS
We propose a quantum algorithm to solve systems of nonlinear differential equations. Using
a quantum feature map encoding, we define functions as expectation values of parametrized …