The neuromechanics of animal locomotion: From biology to robotics and back

P Ramdya, AJ Ijspeert - Science Robotics, 2023 - science.org
Robotics and neuroscience are sister disciplines that both aim to understand how agile,
efficient, and robust locomotion can be achieved in autonomous agents. Robotics has …

Robot learning from randomized simulations: A review

F Muratore, F Ramos, G Turk, W Yu… - Frontiers in Robotics …, 2022 - frontiersin.org
The rise of deep learning has caused a paradigm shift in robotics research, favoring
methods that require large amounts of data. Unfortunately, it is prohibitively expensive to …

Learning agile soccer skills for a bipedal robot with deep reinforcement learning

T Haarnoja, B Moran, G Lever, SH Huang… - Science Robotics, 2024 - science.org
We investigated whether deep reinforcement learning (deep RL) is able to synthesize
sophisticated and safe movement skills for a low-cost, miniature humanoid robot that can be …

On the opportunities and risks of foundation models

R Bommasani, DA Hudson, E Adeli, R Altman… - arxiv preprint arxiv …, 2021 - arxiv.org
AI is undergoing a paradigm shift with the rise of models (eg, BERT, DALL-E, GPT-3) that are
trained on broad data at scale and are adaptable to a wide range of downstream tasks. We …

Scientific exploration of challenging planetary analog environments with a team of legged robots

P Arm, G Waibel, J Preisig, T Tuna, R Zhou, V Bickel… - Science robotics, 2023 - science.org
The interest in exploring planetary bodies for scientific investigation and in situ resource
utilization is ever-rising. Yet, many sites of interest are inaccessible to state-of-the-art …

Legged locomotion in challenging terrains using egocentric vision

A Agarwal, A Kumar, J Malik… - Conference on robot …, 2023 - proceedings.mlr.press
Animals are capable of precise and agile locomotion using vision. Replicating this ability
has been a long-standing goal in robotics. The traditional approach has been to decompose …

Rma: Rapid motor adaptation for legged robots

A Kumar, Z Fu, D Pathak, J Malik - arxiv preprint arxiv:2107.04034, 2021 - arxiv.org
Successful real-world deployment of legged robots would require them to adapt in real-time
to unseen scenarios like changing terrains, changing payloads, wear and tear. This paper …

Learning robust perceptive locomotion for quadrupedal robots in the wild

T Miki, J Lee, J Hwangbo, L Wellhausen, V Koltun… - Science robotics, 2022 - science.org
Legged robots that can operate autonomously in remote and hazardous environments will
greatly increase opportunities for exploration into underexplored areas. Exteroceptive …

Learning quadrupedal locomotion over challenging terrain

J Lee, J Hwangbo, L Wellhausen, V Koltun, M Hutter - Science robotics, 2020 - science.org
Legged locomotion can extend the operational domain of robots to some of the most
challenging environments on Earth. However, conventional controllers for legged …

Reinforcement learning for versatile, dynamic, and robust bipedal locomotion control

Z Li, XB Peng, P Abbeel, S Levine… - … Journal of Robotics …, 2024 - journals.sagepub.com
This paper presents a comprehensive study on using deep reinforcement learning (RL) to
create dynamic locomotion controllers for bipedal robots. Going beyond focusing on a single …