Concepts of artificial intelligence for computer-assisted drug discovery
X Yang, Y Wang, R Byrne, G Schneider… - Chemical …, 2019 - ACS Publications
Artificial intelligence (AI), and, in particular, deep learning as a subcategory of AI, provides
opportunities for the discovery and development of innovative drugs. Various machine …
opportunities for the discovery and development of innovative drugs. Various machine …
Key topics in molecular docking for drug design
Molecular docking has been widely employed as a fast and inexpensive technique in the
past decades, both in academic and industrial settings. Although this discipline has now had …
past decades, both in academic and industrial settings. Although this discipline has now had …
Benchmarking AlphaFold‐enabled molecular docking predictions for antibiotic discovery
Efficient identification of drug mechanisms of action remains a challenge. Computational
docking approaches have been widely used to predict drug binding targets; yet, such …
docking approaches have been widely used to predict drug binding targets; yet, such …
GNINA 1.0: molecular docking with deep learning
Molecular docking computationally predicts the conformation of a small molecule when
binding to a receptor. Scoring functions are a vital piece of any molecular docking pipeline …
binding to a receptor. Scoring functions are a vital piece of any molecular docking pipeline …
Protein–ligand scoring with convolutional neural networks
Computational approaches to drug discovery can reduce the time and cost associated with
experimental assays and enable the screening of novel chemotypes. Structure-based drug …
experimental assays and enable the screening of novel chemotypes. Structure-based drug …
Artificial intelligence and machine learning‐aided drug discovery in central nervous system diseases: State‐of‐the‐arts and future directions
Neurological disorders significantly outnumber diseases in other therapeutic areas.
However, develo** drugs for central nervous system (CNS) disorders remains the most …
However, develo** drugs for central nervous system (CNS) disorders remains the most …
Development and evaluation of a deep learning model for protein–ligand binding affinity prediction
MM Stepniewska-Dziubinska, P Zielenkiewicz… - …, 2018 - academic.oup.com
Motivation Structure based ligand discovery is one of the most successful approaches for
augmenting the drug discovery process. Currently, there is a notable shift towards machine …
augmenting the drug discovery process. Currently, there is a notable shift towards machine …
An overview of scoring functions used for protein–ligand interactions in molecular docking
J Li, A Fu, L Zhang - Interdisciplinary Sciences: Computational Life …, 2019 - Springer
Currently, molecular docking is becoming a key tool in drug discovery and molecular
modeling applications. The reliability of molecular docking depends on the accuracy of the …
modeling applications. The reliability of molecular docking depends on the accuracy of the …
Graph convolutional neural networks for predicting drug-target interactions
Accurate determination of target-ligand interactions is crucial in the drug discovery process.
In this paper, we propose a graph-convolutional (Graph-CNN) framework for predicting …
In this paper, we propose a graph-convolutional (Graph-CNN) framework for predicting …
A practical guide to machine-learning scoring for structure-based virtual screening
Abstract Structure-based virtual screening (SBVS) via docking has been used to discover
active molecules for a range of therapeutic targets. Chemical and protein data sets that …
active molecules for a range of therapeutic targets. Chemical and protein data sets that …