Gaussian process regression for materials and molecules
We provide an introduction to Gaussian process regression (GPR) machine-learning
methods in computational materials science and chemistry. The focus of the present review …
methods in computational materials science and chemistry. The focus of the present review …
Four generations of high-dimensional neural network potentials
J Behler - Chemical Reviews, 2021 - ACS Publications
Since their introduction about 25 years ago, machine learning (ML) potentials have become
an important tool in the field of atomistic simulations. After the initial decade, in which neural …
an important tool in the field of atomistic simulations. After the initial decade, in which neural …
Combining machine learning and computational chemistry for predictive insights into chemical systems
Machine learning models are poised to make a transformative impact on chemical sciences
by dramatically accelerating computational algorithms and amplifying insights available from …
by dramatically accelerating computational algorithms and amplifying insights available from …
Accurate global machine learning force fields for molecules with hundreds of atoms
Global machine learning force fields, with the capacity to capture collective interactions in
molecular systems, now scale up to a few dozen atoms due to considerable growth of model …
molecular systems, now scale up to a few dozen atoms due to considerable growth of model …
SpookyNet: Learning force fields with electronic degrees of freedom and nonlocal effects
Abstract Machine-learned force fields combine the accuracy of ab initio methods with the
efficiency of conventional force fields. However, current machine-learned force fields …
efficiency of conventional force fields. However, current machine-learned force fields …
Big-data science in porous materials: materials genomics and machine learning
By combining metal nodes with organic linkers we can potentially synthesize millions of
possible metal–organic frameworks (MOFs). The fact that we have so many materials opens …
possible metal–organic frameworks (MOFs). The fact that we have so many materials opens …
Machine learning interatomic potentials and long-range physics
Advances in machine learned interatomic potentials (MLIPs), such as those using neural
networks, have resulted in short-range models that can infer interaction energies with near …
networks, have resulted in short-range models that can infer interaction energies with near …
Deep potentials for materials science
To fill the gap between accurate (and expensive) ab initio calculations and efficient atomistic
simulations based on empirical interatomic potentials, a new class of descriptions of atomic …
simulations based on empirical interatomic potentials, a new class of descriptions of atomic …
Improving the accuracy of atomistic simulations of the electrochemical interface
Atomistic simulation of the electrochemical double layer is an ambitious undertaking,
requiring quantum mechanical description of electrons, phase space sampling of liquid …
requiring quantum mechanical description of electrons, phase space sampling of liquid …
Machine learning potentials for complex aqueous systems made simple
Simulation techniques based on accurate and efficient representations of potential energy
surfaces are urgently needed for the understanding of complex systems such as solid–liquid …
surfaces are urgently needed for the understanding of complex systems such as solid–liquid …