Knowledge graphs

A Hogan, E Blomqvist, M Cochez, C d'Amato… - ACM Computing …, 2021 - dl.acm.org
In this article, we provide a comprehensive introduction to knowledge graphs, which have
recently garnered significant attention from both industry and academia in scenarios that …

Graph neural network: A comprehensive review on non-euclidean space

NA Asif, Y Sarker, RK Chakrabortty, MJ Ryan… - Ieee …, 2021 - ieeexplore.ieee.org
This review provides a comprehensive overview of the state-of-the-art methods of graph-
based networks from a deep learning perspective. Graph networks provide a generalized …

Financial time series forecasting with multi-modality graph neural network

D Cheng, F Yang, S **ang, J Liu - Pattern Recognition, 2022 - Elsevier
Financial time series analysis plays a central role in hedging market risks and optimizing
investment decisions. This is a challenging task as the problems are always accompanied …

Decoupling the depth and scope of graph neural networks

H Zeng, M Zhang, Y **a, A Srivastava… - Advances in …, 2021 - proceedings.neurips.cc
State-of-the-art Graph Neural Networks (GNNs) have limited scalability with respect to the
graph and model sizes. On large graphs, increasing the model depth often means …

[BUCH][B] Deep learning on graphs

Y Ma, J Tang - 2021 - books.google.com
Deep learning on graphs has become one of the hottest topics in machine learning. The
book consists of four parts to best accommodate our readers with diverse backgrounds and …

Oag-bench: a human-curated benchmark for academic graph mining

F Zhang, S Shi, Y Zhu, B Chen, Y Cen, J Yu… - Proceedings of the 30th …, 2024 - dl.acm.org
With the rapid proliferation of scientific literature, versatile academic knowledge services
increasingly rely on comprehensive academic graph mining. Despite the availability of …

Log2vec: A heterogeneous graph embedding based approach for detecting cyber threats within enterprise

F Liu, Y Wen, D Zhang, X Jiang, X **ng… - Proceedings of the 2019 …, 2019 - dl.acm.org
Conventional attacks of insider employees and emerging APT are both major threats for the
organizational information system. Existing detections mainly concentrate on users' behavior …

P3: Distributed deep graph learning at scale

S Gandhi, AP Iyer - 15th {USENIX} Symposium on Operating Systems …, 2021 - usenix.org
Graph Neural Networks (GNNs) have gained significant attention in the recent past, and
become one of the fastest growing subareas in deep learning. While several new GNN …

On provable benefits of depth in training graph convolutional networks

W Cong, M Ramezani… - Advances in Neural …, 2021 - proceedings.neurips.cc
Abstract Graph Convolutional Networks (GCNs) are known to suffer from performance
degradation as the number of layers increases, which is usually attributed to over …

Graph prototypical networks for few-shot learning on attributed networks

K Ding, J Wang, J Li, K Shu, C Liu, H Liu - Proceedings of the 29th ACM …, 2020 - dl.acm.org
Attributed networks nowadays are ubiquitous in a myriad of high-impact applications, such
as social network analysis, financial fraud detection, and drug discovery. As a central …