Findings of the 2019 conference on machine translation (WMT19)

L Barrault, O Bojar, MR Costa-Jussa, C Federmann… - 2019 - zora.uzh.ch
This paper presents the results of the premier shared task organized alongside the
Conference on Machine Translation (WMT) 2019. Participants were asked to build machine …

Neural hidden markov model for machine translation

W Wang, D Zhu, T Alkhouli, Z Gan… - Proceedings of the 56th …, 2018 - aclanthology.org
Attention-based neural machine translation (NMT) models selectively focus on specific
source positions to produce a translation, which brings significant improvements over pure …

Automatic discrimination of human and neural machine translation: A study with multiple pre-trained models and longer context

T van der Werff, R van Noord, A Toral - Proceedings of the 23rd …, 2022 - research.rug.nl
We address the task of automatically distinguishing between human-translated (HT) and
machine translated (MT) texts. Following recent work, we fine-tune pre-trained language …

Automatic discrimination of human and neural machine translation in multilingual scenarios

M Chichirau, R van Noord, A Toral - arxiv preprint arxiv:2305.19757, 2023 - arxiv.org
We tackle the task of automatically discriminating between human and machine translations.
As opposed to most previous work, we perform experiments in a multilingual setting …

[PDF][PDF] Language modeling and machine translation: improvements in training and modeling

G Yingbo - 2024 - www-i6.informatik.rwth-aachen.de
The field of statistical language modeling and machine translation has seen rapid
developments in recent years, with artificial neural networks taking center of the stage …

[PDF][PDF] 基于重解码的神经机器翻译方法研究

宗勤勤, **茂西 - 中文信息学报, 2021 - jcip.cipsc.org.cn
基于Transformer 的序列转换模型是当前性能最优的机器翻译模型之一. 该模型在生成机器译文
时, 通常从左到右逐个生成目标词, 这使得当前位置词的生成不能利用译文中该词之后未生成词 …

ニューラル機械翻訳における日英ニュース翻訳のための適切な出力文数の推定と制御

伊藤均, 衣川和尭, 美野秀弥, 後藤功雄… - 映像情報メディア学会 …, 2022 - jstage.jst.go.jp
ニューラル機械翻訳における日英ニュース翻訳のための適切な出力文数の推定と制御 Toggle
navigation J-STAGE home 資料・記事を探す 資料を探す:資料タイトルから 資料を探す:分野から …