Revisiting crowd counting: State-of-the-art, trends, and future perspectives
Crowd counting is an effective tool for situational awareness in public places. Automated
crowd counting using images and videos is an interesting yet challenging problem that has …
crowd counting using images and videos is an interesting yet challenging problem that has …
Rethinking counting and localization in crowds: A purely point-based framework
Localizing individuals in crowds is more in accordance with the practical demands of
subsequent high-level crowd analysis tasks than simply counting. However, existing …
subsequent high-level crowd analysis tasks than simply counting. However, existing …
Boosting crowd counting via multifaceted attention
This paper focuses on crowd counting. As large-scale variations often exist within crowd
images, neither fixed-size convolution kernel of CNN nor fixed-size attentions of recent …
images, neither fixed-size convolution kernel of CNN nor fixed-size attentions of recent …
Rethinking spatial invariance of convolutional networks for object counting
Previous work generally believes that improving the spatial invariance of convolutional
networks is the key to object counting. However, after verifying several mainstream counting …
networks is the key to object counting. However, after verifying several mainstream counting …
A generalized loss function for crowd counting and localization
Previous work shows that a better density map representation can improve the performance
of crowd counting. In this paper, we investigate learning the density map representation …
of crowd counting. In this paper, we investigate learning the density map representation …
Transcrowd: weakly-supervised crowd counting with transformers
The mainstream crowd counting methods usually utilize the convolution neural network
(CNN) to regress a density map, requiring point-level annotations. However, annotating …
(CNN) to regress a density map, requiring point-level annotations. However, annotating …
An end-to-end transformer model for crowd localization
Crowd localization, predicting head positions, is a more practical and high-level task than
simply counting. Existing methods employ pseudo-bounding boxes or pre-designed …
simply counting. Existing methods employ pseudo-bounding boxes or pre-designed …
Deep learning in crowd counting: A survey
Counting high‐density objects quickly and accurately is a popular area of research. Crowd
counting has significant social and economic value and is a major focus in artificial …
counting has significant social and economic value and is a major focus in artificial …
Crowd counting in the frequency domain
This paper investigates crowd counting in the frequency domain, which is a novel direction
compared to the traditional view in the spatial domain. By transforming the density map into …
compared to the traditional view in the spatial domain. By transforming the density map into …
Steerer: Resolving scale variations for counting and localization via selective inheritance learning
Scale variation is a deep-rooted problem in object counting, which has not been effectively
addressed by existing scale-aware algorithms. An important factor is that they typically …
addressed by existing scale-aware algorithms. An important factor is that they typically …