An overview of multi-agent reinforcement learning from game theoretical perspective

Y Yang, J Wang - arxiv preprint arxiv:2011.00583, 2020 - arxiv.org
Following the remarkable success of the AlphaGO series, 2019 was a booming year that
witnessed significant advances in multi-agent reinforcement learning (MARL) techniques …

Deep reinforcement learning for multiagent systems: A review of challenges, solutions, and applications

TT Nguyen, ND Nguyen… - IEEE transactions on …, 2020 - ieeexplore.ieee.org
Reinforcement learning (RL) algorithms have been around for decades and employed to
solve various sequential decision-making problems. These algorithms, however, have faced …

Mastering the game of Stratego with model-free multiagent reinforcement learning

J Perolat, B De Vylder, D Hennes, E Tarassov, F Strub… - Science, 2022 - science.org
We introduce DeepNash, an autonomous agent that plays the imperfect information game
Stratego at a human expert level. Stratego is one of the few iconic board games that artificial …

Multi-agent deep reinforcement learning: a survey

S Gronauer, K Diepold - Artificial Intelligence Review, 2022 - Springer
The advances in reinforcement learning have recorded sublime success in various domains.
Although the multi-agent domain has been overshadowed by its single-agent counterpart …

A survey and critique of multiagent deep reinforcement learning

P Hernandez-Leal, B Kartal, ME Taylor - Autonomous Agents and Multi …, 2019 - Springer
Deep reinforcement learning (RL) has achieved outstanding results in recent years. This has
led to a dramatic increase in the number of applications and methods. Recent works have …

Artificial intelligence, algorithmic pricing, and collusion

E Calvano, G Calzolari, V Denicolo… - American Economic …, 2020 - aeaweb.org
Increasingly, algorithms are supplanting human decision-makers in pricing goods and
services. To analyze the possible consequences, we study experimentally the behavior of …

A unified game-theoretic approach to multiagent reinforcement learning

M Lanctot, V Zambaldi, A Gruslys… - Advances in neural …, 2017 - proceedings.neurips.cc
There has been a resurgence of interest in multiagent reinforcement learning (MARL), due
partly to the recent success of deep neural networks. The simplest form of MARL is …

Multi-agent deep reinforcement learning for multi-robot applications: A survey

J Orr, A Dutta - Sensors, 2023 - mdpi.com
Deep reinforcement learning has produced many success stories in recent years. Some
example fields in which these successes have taken place include mathematics, games …

Cooperative multi-agent control using deep reinforcement learning

JK Gupta, M Egorov, M Kochenderfer - … Best Papers, São Paulo, Brazil, May …, 2017 - Springer
This work considers the problem of learning cooperative policies in complex, partially
observable domains without explicit communication. We extend three classes of single …

[HTML][HTML] The hanabi challenge: A new frontier for ai research

N Bard, JN Foerster, S Chandar, N Burch, M Lanctot… - Artificial Intelligence, 2020 - Elsevier
From the early days of computing, games have been important testbeds for studying how
well machines can do sophisticated decision making. In recent years, machine learning has …