Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Combining federated learning and edge computing toward ubiquitous intelligence in 6G network: Challenges, recent advances, and future directions
Full leverage of the huge volume of data generated on a large number of user devices for
providing intelligent services in the 6G network calls for Ubiquitous Intelligence (UI). A key to …
providing intelligent services in the 6G network calls for Ubiquitous Intelligence (UI). A key to …
End-edge-cloud collaborative computing for deep learning: A comprehensive survey
The booming development of deep learning applications and services heavily relies on
large deep learning models and massive data in the cloud. However, cloud-based deep …
large deep learning models and massive data in the cloud. However, cloud-based deep …
{MLaaS} in the wild: Workload analysis and scheduling in {Large-Scale} heterogeneous {GPU} clusters
With the sustained technological advances in machine learning (ML) and the availability of
massive datasets recently, tech companies are deploying large ML-as-a-Service (MLaaS) …
massive datasets recently, tech companies are deploying large ML-as-a-Service (MLaaS) …
A unified architecture for accelerating distributed {DNN} training in heterogeneous {GPU/CPU} clusters
Data center clusters that run DNN training jobs are inherently heterogeneous. They have
GPUs and CPUs for computation and network bandwidth for distributed training. However …
GPUs and CPUs for computation and network bandwidth for distributed training. However …
An efficient design of intelligent network data plane
Deploying machine learning models directly on the network data plane enables intelligent
traffic analysis at line-speed using data-driven models rather than predefined protocols …
traffic analysis at line-speed using data-driven models rather than predefined protocols …
In-network machine learning using programmable network devices: A survey
Machine learning is widely used to solve networking challenges, ranging from traffic
classification and anomaly detection to network configuration. However, machine learning …
classification and anomaly detection to network configuration. However, machine learning …
A survey on data plane programming with p4: Fundamentals, advances, and applied research
Programmable data planes allow users to define their own data plane algorithms for network
devices including appropriate data plane application programming interfaces (APIs) which …
devices including appropriate data plane application programming interfaces (APIs) which …
{ATP}: In-network aggregation for multi-tenant learning
Distributed deep neural network training (DT) systems are widely deployed in clusters where
the network is shared across multiple tenants, ie, multiple DT jobs. Each DT job computes …
the network is shared across multiple tenants, ie, multiple DT jobs. Each DT job computes …
Software-hardware co-design for fast and scalable training of deep learning recommendation models
Deep learning recommendation models (DLRMs) have been used across many business-
critical services at Meta and are the single largest AI application in terms of infrastructure …
critical services at Meta and are the single largest AI application in terms of infrastructure …
A guide through the zoo of biased SGD
Y Demidovich, G Malinovsky… - Advances in Neural …, 2023 - proceedings.neurips.cc
Abstract Stochastic Gradient Descent (SGD) is arguably the most important single algorithm
in modern machine learning. Although SGD with unbiased gradient estimators has been …
in modern machine learning. Although SGD with unbiased gradient estimators has been …