2D materials and van der Waals heterostructures
BACKGROUND Materials by design is an appealing idea that is very hard to realize in
practice. Combining the best of different ingredients in one ultimate material is a task for …
practice. Combining the best of different ingredients in one ultimate material is a task for …
Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides
Recent advances in the development of atomically thin layers of van der Waals bonded
solids have opened up new possibilities for the exploration of 2D physics as well as for …
solids have opened up new possibilities for the exploration of 2D physics as well as for …
Photonic van der Waals integration from 2D materials to 3D nanomembranes
The integration of functional nanomaterials and heterostructures with photonic architectures
has laid the foundation for important photonic and optoelectronic applications. The advent of …
has laid the foundation for important photonic and optoelectronic applications. The advent of …
Van der Waals heterostructures and devices
Two-dimensional layered materials (2DLMs) have been a central focus of materials
research since the discovery of graphene just over a decade ago. Each layer in 2DLMs …
research since the discovery of graphene just over a decade ago. Each layer in 2DLMs …
A library of atomically thin metal chalcogenides
Investigations of two-dimensional transition-metal chalcogenides (TMCs) have recently
revealed interesting physical phenomena, including the quantum spin Hall effect,, valley …
revealed interesting physical phenomena, including the quantum spin Hall effect,, valley …
Valleytronics in 2D materials
Semiconductor technology is currently based on the manipulation of electronic charge;
however, electrons have additional degrees of freedom, such as spin and valley, that can be …
however, electrons have additional degrees of freedom, such as spin and valley, that can be …
Colloquium: Excitons in atomically thin transition metal dichalcogenides
Atomically thin materials such as graphene and monolayer transition metal dichalcogenides
(TMDs) exhibit remarkable physical properties resulting from their reduced dimensionality …
(TMDs) exhibit remarkable physical properties resulting from their reduced dimensionality …
Angle-resolved photoemission studies of quantum materials
The physics of quantum materials is dictated by many-body interactions and mathematical
concepts such as symmetry and topology that have transformed our understanding of matter …
concepts such as symmetry and topology that have transformed our understanding of matter …
Janus monolayers of transition metal dichalcogenides
Structural symmetry-breaking plays a crucial role in determining the electronic band
structures of two-dimensional materials. Tremendous efforts have been devoted to breaking …
structures of two-dimensional materials. Tremendous efforts have been devoted to breaking …
Recent advances in two-dimensional materials beyond graphene
The isolation of graphene in 2004 from graphite was a defining moment for the “birth” of a
field: two-dimensional (2D) materials. In recent years, there has been a rapidly increasing …
field: two-dimensional (2D) materials. In recent years, there has been a rapidly increasing …