Graph condensation: A survey
The rapid growth of graph data poses significant challenges in storage, transmission, and
particularly the training of graph neural networks (GNNs). To address these challenges …
particularly the training of graph neural networks (GNNs). To address these challenges …
[PDF][PDF] Natural language is all a graph needs
The emergence of large-scale pre-trained language models, such as ChatGPT, has
revolutionized various research fields in artificial intelligence. Transformersbased large …
revolutionized various research fields in artificial intelligence. Transformersbased large …
Structure-free graph condensation: From large-scale graphs to condensed graph-free data
Graph condensation, which reduces the size of a large-scale graph by synthesizing a small-
scale condensed graph as its substitution, has immediate benefits for various graph learning …
scale condensed graph as its substitution, has immediate benefits for various graph learning …
Gadbench: Revisiting and benchmarking supervised graph anomaly detection
With a long history of traditional Graph Anomaly Detection (GAD) algorithms and recently
popular Graph Neural Networks (GNNs), it is still not clear (1) how they perform under a …
popular Graph Neural Networks (GNNs), it is still not clear (1) how they perform under a …
Simple and efficient heterogeneous graph neural network
Heterogeneous graph neural networks (HGNNs) have the powerful capability to embed rich
structural and semantic information of a heterogeneous graph into node representations …
structural and semantic information of a heterogeneous graph into node representations …
Graph attention multi-layer perceptron
Graph neural networks (GNNs) have achieved great success in many graph-based
applications. However, the enormous size and high sparsity level of graphs hinder their …
applications. However, the enormous size and high sparsity level of graphs hinder their …
Node feature extraction by self-supervised multi-scale neighborhood prediction
Learning on graphs has attracted significant attention in the learning community due to
numerous real-world applications. In particular, graph neural networks (GNNs), which take …
numerous real-world applications. In particular, graph neural networks (GNNs), which take …
A comprehensive study on large-scale graph training: Benchmarking and rethinking
Large-scale graph training is a notoriously challenging problem for graph neural networks
(GNNs). Due to the nature of evolving graph structures into the training process, vanilla …
(GNNs). Due to the nature of evolving graph structures into the training process, vanilla …
Graphtext: Graph reasoning in text space
Large Language Models (LLMs) have gained the ability to assimilate human knowledge and
facilitate natural language interactions with both humans and other LLMs. However, despite …
facilitate natural language interactions with both humans and other LLMs. However, despite …
Simplifying approach to node classification in graph neural networks
Abstract Graph Neural Networks (GNNs) have become one of the indispensable tools to
learn from graph-structured data, and their usefulness has been shown in wide variety of …
learn from graph-structured data, and their usefulness has been shown in wide variety of …