A survey on graph neural networks for time series: Forecasting, classification, imputation, and anomaly detection
Time series are the primary data type used to record dynamic system measurements and
generated in great volume by both physical sensors and online processes (virtual sensors) …
generated in great volume by both physical sensors and online processes (virtual sensors) …
The evolution of distributed systems for graph neural networks and their origin in graph processing and deep learning: A survey
Graph neural networks (GNNs) are an emerging research field. This specialized deep
neural network architecture is capable of processing graph structured data and bridges the …
neural network architecture is capable of processing graph structured data and bridges the …
Exploring the potential of large language models (llms) in learning on graphs
Learning on Graphs has attracted immense attention due to its wide real-world applications.
The most popular pipeline for learning on graphs with textual node attributes primarily relies …
The most popular pipeline for learning on graphs with textual node attributes primarily relies …
Graph representation learning in biomedicine and healthcare
Networks—or graphs—are universal descriptors of systems of interacting elements. In
biomedicine and healthcare, they can represent, for example, molecular interactions …
biomedicine and healthcare, they can represent, for example, molecular interactions …
A metaverse: Taxonomy, components, applications, and open challenges
SM Park, YG Kim - IEEE access, 2022 - ieeexplore.ieee.org
Unlike previous studies on the Metaverse based on Second Life, the current Metaverse is
based on the social value of Generation Z that online and offline selves are not different …
based on the social value of Generation Z that online and offline selves are not different …
Nodeformer: A scalable graph structure learning transformer for node classification
Graph neural networks have been extensively studied for learning with inter-connected data.
Despite this, recent evidence has revealed GNNs' deficiencies related to over-squashing …
Despite this, recent evidence has revealed GNNs' deficiencies related to over-squashing …
Current progress and open challenges for applying deep learning across the biosciences
Deep Learning (DL) has recently enabled unprecedented advances in one of the grand
challenges in computational biology: the half-century-old problem of protein structure …
challenges in computational biology: the half-century-old problem of protein structure …
Graph neural networks: foundation, frontiers and applications
The field of graph neural networks (GNNs) has seen rapid and incredible strides over the
recent years. Graph neural networks, also known as deep learning on graphs, graph …
recent years. Graph neural networks, also known as deep learning on graphs, graph …
Data augmentation for deep graph learning: A survey
Graph neural networks, a powerful deep learning tool to model graph-structured data, have
demonstrated remarkable performance on numerous graph learning tasks. To address the …
demonstrated remarkable performance on numerous graph learning tasks. To address the …
Large scale learning on non-homophilous graphs: New benchmarks and strong simple methods
Many widely used datasets for graph machine learning tasks have generally been
homophilous, where nodes with similar labels connect to each other. Recently, new Graph …
homophilous, where nodes with similar labels connect to each other. Recently, new Graph …