A survey on graph neural networks for time series: Forecasting, classification, imputation, and anomaly detection

M **, HY Koh, Q Wen, D Zambon… - … on Pattern Analysis …, 2024 - ieeexplore.ieee.org
Time series are the primary data type used to record dynamic system measurements and
generated in great volume by both physical sensors and online processes (virtual sensors) …

The evolution of distributed systems for graph neural networks and their origin in graph processing and deep learning: A survey

J Vatter, R Mayer, HA Jacobsen - ACM Computing Surveys, 2023 - dl.acm.org
Graph neural networks (GNNs) are an emerging research field. This specialized deep
neural network architecture is capable of processing graph structured data and bridges the …

Exploring the potential of large language models (llms) in learning on graphs

Z Chen, H Mao, H Li, W **, H Wen, X Wei… - ACM SIGKDD …, 2024 - dl.acm.org
Learning on Graphs has attracted immense attention due to its wide real-world applications.
The most popular pipeline for learning on graphs with textual node attributes primarily relies …

Graph representation learning in biomedicine and healthcare

MM Li, K Huang, M Zitnik - Nature Biomedical Engineering, 2022 - nature.com
Networks—or graphs—are universal descriptors of systems of interacting elements. In
biomedicine and healthcare, they can represent, for example, molecular interactions …

A metaverse: Taxonomy, components, applications, and open challenges

SM Park, YG Kim - IEEE access, 2022 - ieeexplore.ieee.org
Unlike previous studies on the Metaverse based on Second Life, the current Metaverse is
based on the social value of Generation Z that online and offline selves are not different …

Nodeformer: A scalable graph structure learning transformer for node classification

Q Wu, W Zhao, Z Li, DP Wipf… - Advances in Neural …, 2022 - proceedings.neurips.cc
Graph neural networks have been extensively studied for learning with inter-connected data.
Despite this, recent evidence has revealed GNNs' deficiencies related to over-squashing …

Current progress and open challenges for applying deep learning across the biosciences

N Sapoval, A Aghazadeh, MG Nute… - Nature …, 2022 - nature.com
Deep Learning (DL) has recently enabled unprecedented advances in one of the grand
challenges in computational biology: the half-century-old problem of protein structure …

Graph neural networks: foundation, frontiers and applications

L Wu, P Cui, J Pei, L Zhao, X Guo - … of the 28th ACM SIGKDD Conference …, 2022 - dl.acm.org
The field of graph neural networks (GNNs) has seen rapid and incredible strides over the
recent years. Graph neural networks, also known as deep learning on graphs, graph …

Data augmentation for deep graph learning: A survey

K Ding, Z Xu, H Tong, H Liu - ACM SIGKDD Explorations Newsletter, 2022 - dl.acm.org
Graph neural networks, a powerful deep learning tool to model graph-structured data, have
demonstrated remarkable performance on numerous graph learning tasks. To address the …

Large scale learning on non-homophilous graphs: New benchmarks and strong simple methods

D Lim, F Hohne, X Li, SL Huang… - Advances in …, 2021 - proceedings.neurips.cc
Many widely used datasets for graph machine learning tasks have generally been
homophilous, where nodes with similar labels connect to each other. Recently, new Graph …