Deep learning-enabled medical computer vision

A Esteva, K Chou, S Yeung, N Naik, A Madani… - NPJ digital …, 2021 - nature.com
A decade of unprecedented progress in artificial intelligence (AI) has demonstrated the
potential for many fields—including medicine—to benefit from the insights that AI techniques …

Deep learning in histopathology: the path to the clinic

J Van der Laak, G Litjens, F Ciompi - Nature medicine, 2021 - nature.com
Abstract Machine learning techniques have great potential to improve medical diagnostics,
offering ways to improve accuracy, reproducibility and speed, and to ease workloads for …

Artificial intelligence for multimodal data integration in oncology

J Lipkova, RJ Chen, B Chen, MY Lu, M Barbieri… - Cancer cell, 2022 - cell.com
In oncology, the patient state is characterized by a whole spectrum of modalities, ranging
from radiology, histology, and genomics to electronic health records. Current artificial …

Artificial intelligence in histopathology: enhancing cancer research and clinical oncology

A Shmatko, N Ghaffari Laleh, M Gerstung, JN Kather - Nature cancer, 2022 - nature.com
Artificial intelligence (AI) methods have multiplied our capabilities to extract quantitative
information from digital histopathology images. AI is expected to reduce workload for human …

A multimodal generative AI copilot for human pathology

MY Lu, B Chen, DFK Williamson, RJ Chen, M Zhao… - Nature, 2024 - nature.com
Computational pathology, has witnessed considerable progress in the development of both
task-specific predictive models and task-agnostic self-supervised vision encoders …

Clinical-grade computational pathology using weakly supervised deep learning on whole slide images

G Campanella, MG Hanna, L Geneslaw, A Miraflor… - Nature medicine, 2019 - nature.com
The development of decision support systems for pathology and their deployment in clinical
practice have been hindered by the need for large manually annotated datasets. To …

Harnessing multimodal data integration to advance precision oncology

KM Boehm, P Khosravi, R Vanguri, J Gao… - Nature Reviews …, 2022 - nature.com
Advances in quantitative biomarker development have accelerated new forms of data-driven
insights for patients with cancer. However, most approaches are limited to a single mode of …

Data-efficient and weakly supervised computational pathology on whole-slide images

MY Lu, DFK Williamson, TY Chen, RJ Chen… - Nature biomedical …, 2021 - nature.com
Deep-learning methods for computational pathology require either manual annotation of
gigapixel whole-slide images (WSIs) or large datasets of WSIs with slide-level labels and …

Towards a general-purpose foundation model for computational pathology

RJ Chen, T Ding, MY Lu, DFK Williamson, G Jaume… - Nature Medicine, 2024 - nature.com
Quantitative evaluation of tissue images is crucial for computational pathology (CPath) tasks,
requiring the objective characterization of histopathological entities from whole-slide images …

Artificial intelligence in digital pathology—new tools for diagnosis and precision oncology

K Bera, KA Schalper, DL Rimm, V Velcheti… - Nature reviews Clinical …, 2019 - nature.com
In the past decade, advances in precision oncology have resulted in an increased demand
for predictive assays that enable the selection and stratification of patients for treatment. The …