Deep learning-enabled medical computer vision
A decade of unprecedented progress in artificial intelligence (AI) has demonstrated the
potential for many fields—including medicine—to benefit from the insights that AI techniques …
potential for many fields—including medicine—to benefit from the insights that AI techniques …
Deep learning in histopathology: the path to the clinic
Abstract Machine learning techniques have great potential to improve medical diagnostics,
offering ways to improve accuracy, reproducibility and speed, and to ease workloads for …
offering ways to improve accuracy, reproducibility and speed, and to ease workloads for …
Artificial intelligence for multimodal data integration in oncology
In oncology, the patient state is characterized by a whole spectrum of modalities, ranging
from radiology, histology, and genomics to electronic health records. Current artificial …
from radiology, histology, and genomics to electronic health records. Current artificial …
Artificial intelligence in histopathology: enhancing cancer research and clinical oncology
Artificial intelligence (AI) methods have multiplied our capabilities to extract quantitative
information from digital histopathology images. AI is expected to reduce workload for human …
information from digital histopathology images. AI is expected to reduce workload for human …
A multimodal generative AI copilot for human pathology
Computational pathology, has witnessed considerable progress in the development of both
task-specific predictive models and task-agnostic self-supervised vision encoders …
task-specific predictive models and task-agnostic self-supervised vision encoders …
Clinical-grade computational pathology using weakly supervised deep learning on whole slide images
The development of decision support systems for pathology and their deployment in clinical
practice have been hindered by the need for large manually annotated datasets. To …
practice have been hindered by the need for large manually annotated datasets. To …
Harnessing multimodal data integration to advance precision oncology
Advances in quantitative biomarker development have accelerated new forms of data-driven
insights for patients with cancer. However, most approaches are limited to a single mode of …
insights for patients with cancer. However, most approaches are limited to a single mode of …
Data-efficient and weakly supervised computational pathology on whole-slide images
Deep-learning methods for computational pathology require either manual annotation of
gigapixel whole-slide images (WSIs) or large datasets of WSIs with slide-level labels and …
gigapixel whole-slide images (WSIs) or large datasets of WSIs with slide-level labels and …
Towards a general-purpose foundation model for computational pathology
Quantitative evaluation of tissue images is crucial for computational pathology (CPath) tasks,
requiring the objective characterization of histopathological entities from whole-slide images …
requiring the objective characterization of histopathological entities from whole-slide images …
Artificial intelligence in digital pathology—new tools for diagnosis and precision oncology
In the past decade, advances in precision oncology have resulted in an increased demand
for predictive assays that enable the selection and stratification of patients for treatment. The …
for predictive assays that enable the selection and stratification of patients for treatment. The …