Big data algorithms and applications in intelligent transportation system: A review and bibliometric analysis

S Kaffash, AT Nguyen, J Zhu - International journal of production economics, 2021 - Elsevier
The volume and availability of data in the Intelligent Transportation System (ITS) result in the
need for data-driven approaches. Big Data algorithms are applied to further enhance the …

Deep learning models for traffic flow prediction in autonomous vehicles: A review, solutions, and challenges

A Miglani, N Kumar - Vehicular Communications, 2019 - Elsevier
In the last few years, there has been an exponential increase in the usage of the
autonomous vehicles across the globe. It is due to an exponential increase in the popularity …

A hybrid deep learning model with attention-based conv-LSTM networks for short-term traffic flow prediction

H Zheng, F Lin, X Feng, Y Chen - IEEE Transactions on …, 2020 - ieeexplore.ieee.org
Accurate short-time traffic flow prediction has gained gradually increasing importance for
traffic plan and management with the deployment of intelligent transportation systems (ITSs) …

A survey on modern deep neural network for traffic prediction: Trends, methods and challenges

DA Tedjopurnomo, Z Bao, B Zheng… - … on Knowledge and …, 2020 - ieeexplore.ieee.org
In this modern era, traffic congestion has become a major source of severe negative
economic and environmental impact for urban areas worldwide. One of the most efficient …

Big data analytics in intelligent transportation systems: A survey

L Zhu, FR Yu, Y Wang, B Ning… - IEEE Transactions on …, 2018 - ieeexplore.ieee.org
Big data is becoming a research focus in intelligent transportation systems (ITS), which can
be seen in many projects around the world. Intelligent transportation systems will produce a …

[PDF][PDF] LSGCN: Long short-term traffic prediction with graph convolutional networks.

R Huang, C Huang, Y Liu, G Dai, W Kong - IJCAI, 2020 - researchgate.net
Traffic prediction is a classical spatial-temporal prediction problem with many real-world
applications such as intelligent route planning, dynamic traffic management, and smart …

DeepPF: A deep learning based architecture for metro passenger flow prediction

Y Liu, Z Liu, R Jia - Transportation Research Part C: Emerging …, 2019 - Elsevier
This study aims to combine the modeling skills of deep learning and the domain knowledge
in transportation into prediction of metro passenger flow. We present an end-to-end deep …

Road traffic forecasting: Recent advances and new challenges

I Lana, J Del Ser, M Velez… - IEEE Intelligent …, 2018 - ieeexplore.ieee.org
Due to its paramount relevance in transport planning and logistics, road traffic forecasting
has been a subject of active research within the engineering community for more than 40 …

Deep learning for short-term traffic flow prediction

NG Polson, VO Sokolov - Transportation Research Part C: Emerging …, 2017 - Elsevier
We develop a deep learning model to predict traffic flows. The main contribution is
development of an architecture that combines a linear model that is fitted using ℓ 1 …

Long short-term memory neural network for traffic speed prediction using remote microwave sensor data

X Ma, Z Tao, Y Wang, H Yu, Y Wang - Transportation Research Part C …, 2015 - Elsevier
Neural networks have been extensively applied to short-term traffic prediction in the past
years. This study proposes a novel architecture of neural networks, Long Short-Term Neural …