Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
A review of the application of deep learning in intelligent fault diagnosis of rotating machinery
Z Zhu, Y Lei, G Qi, Y Chai, N Mazur, Y An, X Huang - Measurement, 2023 - Elsevier
With the rapid development of industry, fault diagnosis plays a more and more important role
in maintaining the health of equipment and ensuring the safe operation of equipment. Due to …
in maintaining the health of equipment and ensuring the safe operation of equipment. Due to …
A perspective survey on deep transfer learning for fault diagnosis in industrial scenarios: Theories, applications and challenges
Abstract Deep Transfer Learning (DTL) is a new paradigm of machine learning, which can
not only leverage the advantages of Deep Learning (DL) in feature representation, but also …
not only leverage the advantages of Deep Learning (DL) in feature representation, but also …
Collaborative fault diagnosis of rotating machinery via dual adversarial guided unsupervised multi-domain adaptation network
Most of the existing research on unsupervised cross-domain intelligent fault diagnosis is
based on single-source domain adaptation, which fails to simultaneously utilize various …
based on single-source domain adaptation, which fails to simultaneously utilize various …
Novel joint transfer network for unsupervised bearing fault diagnosis from simulation domain to experimental domain
Unsupervised cross-domain fault diagnosis of bearings has practical significance; however,
the existing studies still face some problems. For example, transfer diagnosis scenarios are …
the existing studies still face some problems. For example, transfer diagnosis scenarios are …
Fault diagnosis in rotating machines based on transfer learning: Literature review
With the emergence of machine learning methods, data-driven fault diagnosis has gained
significant attention in recent years. However, traditional data-driven diagnosis approaches …
significant attention in recent years. However, traditional data-driven diagnosis approaches …
A novel conditional weighting transfer Wasserstein auto-encoder for rolling bearing fault diagnosis with multi-source domains
Transfer learning based on a single source domain to a target domain has received a lot of
attention in the cross-domain fault diagnosis tasks of rolling bearing. However, the practical …
attention in the cross-domain fault diagnosis tasks of rolling bearing. However, the practical …
Domain adversarial graph convolutional network for fault diagnosis under variable working conditions
Unsupervised domain adaptation (UDA)-based methods have made great progress in
mechanical fault diagnosis under variable working conditions. In UDA, three types of …
mechanical fault diagnosis under variable working conditions. In UDA, three types of …
Domain adaptation: challenges, methods, datasets, and applications
Deep Neural Networks (DNNs) trained on one dataset (source domain) do not perform well
on another set of data (target domain), which is different but has similar properties as the …
on another set of data (target domain), which is different but has similar properties as the …
Generative adversarial network in mechanical fault diagnosis under small sample: A systematic review on applications and future perspectives
Intelligent fault diagnosis has been a promising way for condition-based maintenance.
However, the small sample problem has limited the application of intelligent fault diagnosis …
However, the small sample problem has limited the application of intelligent fault diagnosis …
Applications of unsupervised deep transfer learning to intelligent fault diagnosis: A survey and comparative study
Recent progress on intelligent fault diagnosis (IFD) has greatly depended on deep
representation learning and plenty of labeled data. However, machines often operate with …
representation learning and plenty of labeled data. However, machines often operate with …