Machine learning methods for small data challenges in molecular science
Small data are often used in scientific and engineering research due to the presence of
various constraints, such as time, cost, ethics, privacy, security, and technical limitations in …
various constraints, such as time, cost, ethics, privacy, security, and technical limitations in …
Graph neural networks for materials science and chemistry
Abstract Machine learning plays an increasingly important role in many areas of chemistry
and materials science, being used to predict materials properties, accelerate simulations …
and materials science, being used to predict materials properties, accelerate simulations …
Machine learning for electrocatalyst and photocatalyst design and discovery
Electrocatalysts and photocatalysts are key to a sustainable future, generating clean fuels,
reducing the impact of global warming, and providing solutions to environmental pollution …
reducing the impact of global warming, and providing solutions to environmental pollution …
Learning local equivariant representations for large-scale atomistic dynamics
A simultaneously accurate and computationally efficient parametrization of the potential
energy surface of molecules and materials is a long-standing goal in the natural sciences …
energy surface of molecules and materials is a long-standing goal in the natural sciences …
A universal graph deep learning interatomic potential for the periodic table
Interatomic potentials (IAPs), which describe the potential energy surface of atoms, are a
fundamental input for atomistic simulations. However, existing IAPs are either fitted to narrow …
fundamental input for atomistic simulations. However, existing IAPs are either fitted to narrow …
Recent advances and applications of deep learning methods in materials science
Deep learning (DL) is one of the fastest-growing topics in materials data science, with
rapidly emerging applications spanning atomistic, image-based, spectral, and textual data …
rapidly emerging applications spanning atomistic, image-based, spectral, and textual data …
Gaussian process regression for materials and molecules
We provide an introduction to Gaussian process regression (GPR) machine-learning
methods in computational materials science and chemistry. The focus of the present review …
methods in computational materials science and chemistry. The focus of the present review …
Recognition in the domain of molecular chirality: from noncovalent interactions to separation of enantiomers
It is not a coincidence that both chirality and noncovalent interactions are ubiquitous in
nature and synthetic molecular systems. Noncovalent interactivity between chiral molecules …
nature and synthetic molecular systems. Noncovalent interactivity between chiral molecules …
Combining machine learning and computational chemistry for predictive insights into chemical systems
Machine learning models are poised to make a transformative impact on chemical sciences
by dramatically accelerating computational algorithms and amplifying insights available from …
by dramatically accelerating computational algorithms and amplifying insights available from …
Machine-learned potentials for next-generation matter simulations
The choice of simulation methods in computational materials science is driven by a
fundamental trade-off: bridging large time-and length-scales with highly accurate …
fundamental trade-off: bridging large time-and length-scales with highly accurate …