Transformers in medical imaging: A survey

F Shamshad, S Khan, SW Zamir, MH Khan… - Medical Image …, 2023 - Elsevier
Following unprecedented success on the natural language tasks, Transformers have been
successfully applied to several computer vision problems, achieving state-of-the-art results …

Perceptual video quality assessment: A survey

X Min, H Duan, W Sun, Y Zhu, G Zhai - Science China Information …, 2024 - Springer
Perceptual video quality assessment plays a vital role in the field of video processing due to
the existence of quality degradations introduced in various stages of video signal …

Yolov9: Learning what you want to learn using programmable gradient information

CY Wang, IH Yeh, HY Mark Liao - European conference on computer …, 2024 - Springer
Today's deep learning methods focus on how to design the objective functions to make the
prediction as close as possible to the target. Meanwhile, an appropriate neural network …

Run, don't walk: chasing higher FLOPS for faster neural networks

J Chen, S Kao, H He, W Zhuo, S Wen… - Proceedings of the …, 2023 - openaccess.thecvf.com
To design fast neural networks, many works have been focusing on reducing the number of
floating-point operations (FLOPs). We observe that such reduction in FLOPs, however, does …

Open-vocabulary panoptic segmentation with text-to-image diffusion models

J Xu, S Liu, A Vahdat, W Byeon… - Proceedings of the …, 2023 - openaccess.thecvf.com
We present ODISE: Open-vocabulary DIffusion-based panoptic SEgmentation, which unifies
pre-trained text-image diffusion and discriminative models to perform open-vocabulary …

Depth anything: Unleashing the power of large-scale unlabeled data

L Yang, B Kang, Z Huang, X Xu… - Proceedings of the …, 2024 - openaccess.thecvf.com
Abstract This work presents Depth Anything a highly practical solution for robust monocular
depth estimation. Without pursuing novel technical modules we aim to build a simple yet …

Convnext v2: Co-designing and scaling convnets with masked autoencoders

S Woo, S Debnath, R Hu, X Chen… - Proceedings of the …, 2023 - openaccess.thecvf.com
Driven by improved architectures and better representation learning frameworks, the field of
visual recognition has enjoyed rapid modernization and performance boost in the early …

Videomamba: State space model for efficient video understanding

K Li, X Li, Y Wang, Y He, Y Wang, L Wang… - European Conference on …, 2024 - Springer
Addressing the dual challenges of local redundancy and global dependencies in video
understanding, this work innovatively adapts the Mamba to the video domain. The proposed …

Vision mamba: Efficient visual representation learning with bidirectional state space model

L Zhu, B Liao, Q Zhang, X Wang, W Liu… - arxiv preprint arxiv …, 2024 - arxiv.org
Recently the state space models (SSMs) with efficient hardware-aware designs, ie, the
Mamba deep learning model, have shown great potential for long sequence modeling …

Eva: Exploring the limits of masked visual representation learning at scale

Y Fang, W Wang, B **e, Q Sun, L Wu… - Proceedings of the …, 2023 - openaccess.thecvf.com
We launch EVA, a vision-centric foundation model to explore the limits of visual
representation at scale using only publicly accessible data. EVA is a vanilla ViT pre-trained …