Advances in medical image analysis with vision transformers: a comprehensive review

R Azad, A Kazerouni, M Heidari, EK Aghdam… - Medical Image …, 2024 - Elsevier
The remarkable performance of the Transformer architecture in natural language processing
has recently also triggered broad interest in Computer Vision. Among other merits …

Breast cancer detection using deep learning: Datasets, methods, and challenges ahead

RA Dar, M Rasool, A Assad - Computers in biology and medicine, 2022 - Elsevier
Breast Cancer (BC) is the most commonly diagnosed cancer and second leading cause of
mortality among women. About 1 in 8 US women (about 13%) will develop invasive BC …

Searching efficient 3d architectures with sparse point-voxel convolution

H Tang, Z Liu, S Zhao, Y Lin, J Lin, H Wang… - European conference on …, 2020 - Springer
Self-driving cars need to understand 3D scenes efficiently and accurately in order to drive
safely. Given the limited hardware resources, existing 3D perception models are not able to …

AutoML: A survey of the state-of-the-art

X He, K Zhao, X Chu - Knowledge-based systems, 2021 - Elsevier
Deep learning (DL) techniques have obtained remarkable achievements on various tasks,
such as image recognition, object detection, and language modeling. However, building a …

Deep learning based brain tumor segmentation: a survey

Z Liu, L Tong, L Chen, Z Jiang, F Zhou, Q Zhang… - Complex & intelligent …, 2023 - Springer
Brain tumor segmentation is one of the most challenging problems in medical image
analysis. The goal of brain tumor segmentation is to generate accurate delineation of brain …

Deep reinforcement learning in medical imaging: A literature review

SK Zhou, HN Le, K Luu, HV Nguyen, N Ayache - Medical image analysis, 2021 - Elsevier
Deep reinforcement learning (DRL) augments the reinforcement learning framework, which
learns a sequence of actions that maximizes the expected reward, with the representative …

Reinforcement learning in medical image analysis: Concepts, applications, challenges, and future directions

M Hu, J Zhang, L Matkovic, T Liu… - Journal of Applied …, 2023 - Wiley Online Library
Motivation Medical image analysis involves a series of tasks used to assist physicians in
qualitative and quantitative analyses of lesions or anatomical structures which can …

A comprehensive survey on hardware-aware neural architecture search

H Benmeziane, KE Maghraoui, H Ouarnoughi… - arxiv preprint arxiv …, 2021 - arxiv.org
Neural Architecture Search (NAS) methods have been growing in popularity. These
techniques have been fundamental to automate and speed up the time consuming and error …

Weight-sharing neural architecture search: A battle to shrink the optimization gap

L **e, X Chen, K Bi, L Wei, Y Xu, L Wang… - ACM Computing …, 2021 - dl.acm.org
Neural architecture search (NAS) has attracted increasing attention. In recent years,
individual search methods have been replaced by weight-sharing search methods for higher …

Automatic data augmentation for 3D medical image segmentation

J Xu, M Li, Z Zhu - Medical Image Computing and Computer Assisted …, 2020 - Springer
Data augmentation is an effective and universal technique for improving generalization
performance of deep neural networks. It could enrich diversity of training samples that is …