Unlocking the secrets of locking: Finite element analysis in planar linear elasticity
Finite element methods have been the subject of active research for the last six decades.
However, gaps remain in the understanding of even the simplest applications, including …
However, gaps remain in the understanding of even the simplest applications, including …
[LIBRO][B] Finite elements I: Approximation and interpolation
A Ern, JL Guermond - 2021 - books.google.com
This book is the first volume of a three-part textbook suitable for graduate coursework,
professional engineering and academic research. It is also appropriate for graduate flipped …
professional engineering and academic research. It is also appropriate for graduate flipped …
[LIBRO][B] Finite elements II
A Ern, JL Guermond - 2021 - Springer
The mathematization of all sciences, the fading of traditional scientific boundaries, the
impact of computer technology, the growing importance of computer modelling and the …
impact of computer technology, the growing importance of computer modelling and the …
[LIBRO][B] Finite element methods for incompressible flow problems
V John - 2016 - Springer
Incompressible flow problems appear in many models of physical processes and
applications. Their numerical simulation requires in particular a spatial discretization. Finite …
applications. Their numerical simulation requires in particular a spatial discretization. Finite …
[LIBRO][B] Robust numerical methods for singularly perturbed differential equations
HG Roos - 2008 - Springer
The analysis of singular perturbed differential equations began early in the twentieth
century, when approximate solutions were constructed from asymptotic expansions …
century, when approximate solutions were constructed from asymptotic expansions …
[LIBRO][B] Theoretical numerical analysis
K Atkinson, W Han - 2005 - Springer
This textbook has grown out of a course which we teach periodically at the University of
Iowa. We have beginning graduate students in mathematics who wish to work in numerical …
Iowa. We have beginning graduate students in mathematics who wish to work in numerical …
A simple introduction to the mixed finite element method
GN Gatica - Theory and Applications. Springer Briefs in …, 2014 - Springer
The main purpose of this monograph is to provide a simple and accessible introduction to
the mixed finite element method as a fundamental tool to numerically solve a wide class of …
the mixed finite element method as a fundamental tool to numerically solve a wide class of …
Finite element exterior calculus: from Hodge theory to numerical stability
This article reports on the confluence of two streams of research, one emanating from the
fields of numerical analysis and scientific computation, the other from topology and …
fields of numerical analysis and scientific computation, the other from topology and …
A class of discontinuous Petrov–Galerkin methods. II. Optimal test functions
We lay out a program for constructing discontinuous Petrov–Galerkin (DPG) schemes
having test function spaces that are automatically computable to guarantee stability. Given a …
having test function spaces that are automatically computable to guarantee stability. Given a …
[HTML][HTML] Decay of the Kolmogorov N-width for wave problems
C Greif, K Urban - Applied Mathematics Letters, 2019 - Elsevier
The Kolmogorov N-width d N (M) describes the rate of the worst-case error (wrt a subset M⊂
H of a normed space H) arising from a projection onto the best-possible linear subspace of …
H of a normed space H) arising from a projection onto the best-possible linear subspace of …