FAIR1M: A benchmark dataset for fine-grained object recognition in high-resolution remote sensing imagery

X Sun, P Wang, Z Yan, F Xu, R Wang, W Diao… - ISPRS Journal of …, 2022 - Elsevier
With the rapid development of deep learning, many deep learning-based approaches have
made great achievements in object detection tasks. It is generally known that deep learning …

Feature extraction for hyperspectral imagery: The evolution from shallow to deep: Overview and toolbox

B Rasti, D Hong, R Hang, P Ghamisi… - … and Remote Sensing …, 2020 - ieeexplore.ieee.org
Hyperspectral images (HSIs) provide detailed spectral information through hundreds of
(narrow) spectral channels (also known as dimensionality or bands), which can be used to …

Convolutional neural networks for multimodal remote sensing data classification

X Wu, D Hong, J Chanussot - IEEE Transactions on Geoscience …, 2021 - ieeexplore.ieee.org
In recent years, enormous research has been made to improve the classification
performance of single-modal remote sensing (RS) data. However, with the ever-growing …

YOLOv5-Tassel: Detecting tassels in RGB UAV imagery with improved YOLOv5 based on transfer learning

W Liu, K Quijano, MM Crawford - IEEE Journal of Selected …, 2022 - ieeexplore.ieee.org
Unmanned aerial vehicles (UAVs) equipped with lightweight sensors, such as RGB cameras
and LiDAR, have significant potential in precision agriculture, including object detection …

Multimodal fusion transformer for remote sensing image classification

SK Roy, A Deria, D Hong, B Rasti… - … on Geoscience and …, 2023 - ieeexplore.ieee.org
Vision transformers (ViTs) have been trending in image classification tasks due to their
promising performance when compared with convolutional neural networks (CNNs). As a …

Deep learning for unmanned aerial vehicle-based object detection and tracking: A survey

X Wu, W Li, D Hong, R Tao, Q Du - IEEE Geoscience and …, 2021 - ieeexplore.ieee.org
Owing to effective and flexible data acquisition, unmanned aerial vehicles (UAVs) have
recently become a hotspot across the fields of computer vision (CV) and remote sensing …

Spectral–spatial morphological attention transformer for hyperspectral image classification

SK Roy, A Deria, C Shah, JM Haut… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
In recent years, convolutional neural networks (CNNs) have drawn significant attention for
the classification of hyperspectral images (HSIs). Due to their self-attention mechanism, the …

Hyperspectral image classification—Traditional to deep models: A survey for future prospects

M Ahmad, S Shabbir, SK Roy, D Hong… - IEEE journal of …, 2021 - ieeexplore.ieee.org
Hyperspectral imaging (HSI) has been extensively utilized in many real-life applications
because it benefits from the detailed spectral information contained in each pixel. Notably …

Edge computing driven low-light image dynamic enhancement for object detection

Y Wu, H Guo, C Chakraborty… - … on Network Science …, 2022 - ieeexplore.ieee.org
With fast increase in volume of mobile multimedia data, how to apply powerful deep learning
methods to process data with real-time response becomes a major issue. Meanwhile, edge …

Interpretable hyperspectral artificial intelligence: When nonconvex modeling meets hyperspectral remote sensing

D Hong, W He, N Yokoya, J Yao, L Gao… - … and Remote Sensing …, 2021 - ieeexplore.ieee.org
Hyperspectral (HS) imaging, also known as image spectrometry, is a landmark technique in
geoscience and remote sensing (RS). In the past decade, enormous efforts have been made …