[HTML][HTML] A comprehensive review on ensemble deep learning: Opportunities and challenges

A Mohammed, R Kora - Journal of King Saud University-Computer and …, 2023 - Elsevier
In machine learning, two approaches outperform traditional algorithms: ensemble learning
and deep learning. The former refers to methods that integrate multiple base models in the …

Deep reinforcement learning in computer vision: a comprehensive survey

N Le, VS Rathour, K Yamazaki, K Luu… - Artificial Intelligence …, 2022 - Springer
Deep reinforcement learning augments the reinforcement learning framework and utilizes
the powerful representation of deep neural networks. Recent works have demonstrated the …

Rethinking counting and localization in crowds: A purely point-based framework

Q Song, C Wang, Z Jiang, Y Wang… - Proceedings of the …, 2021 - openaccess.thecvf.com
Localizing individuals in crowds is more in accordance with the practical demands of
subsequent high-level crowd analysis tasks than simply counting. However, existing …

Crowdclip: Unsupervised crowd counting via vision-language model

D Liang, J ** automated video surveillance systems (VSSs) has become crucial to
ensure the security and safety of the population, especially during events involving large …

Bayesian loss for crowd count estimation with point supervision

Z Ma, X Wei, X Hong, Y Gong - Proceedings of the IEEE …, 2019 - openaccess.thecvf.com
In crowd counting datasets, each person is annotated by a point, which is usually the center
of the head. And the task is to estimate the total count in a crowd scene. Most of the state-of …

Transcrowd: weakly-supervised crowd counting with transformers

D Liang, X Chen, W Xu, Y Zhou, X Bai - Science China Information …, 2022 - Springer
The mainstream crowd counting methods usually utilize the convolution neural network
(CNN) to regress a density map, requiring point-level annotations. However, annotating …