Connected and automated vehicles: Infrastructure, applications, security, critical challenges, and future aspects

M Sadaf, Z Iqbal, AR Javed, I Saba, M Krichen… - Technologies, 2023 - mdpi.com
Autonomous vehicles (AV) are game-changing innovations that promise a safer, more
convenient, and environmentally friendly mode of transportation than traditional vehicles …

Deep reinforcement learning in transportation research: A review

NP Farazi, B Zou, T Ahamed, L Barua - Transportation research …, 2021 - Elsevier
Applying and adapting deep reinforcement learning (DRL) to tackle transportation problems
is an emerging interdisciplinary field. While rapidly growing, a comprehensive and synthetic …

Deep reinforcement learning for autonomous driving: A survey

BR Kiran, I Sobh, V Talpaert, P Mannion… - IEEE Transactions …, 2021 - ieeexplore.ieee.org
With the development of deep representation learning, the domain of reinforcement learning
(RL) has become a powerful learning framework now capable of learning complex policies …

[BUCH][B] Synthetic data for deep learning

SI Nikolenko - 2021 - Springer
You are holding in your hands… oh, come on, who holds books like this in their hands
anymore? Anyway, you are reading this, and it means that I have managed to release one of …

Joint object detection and multi-object tracking with graph neural networks

Y Wang, K Kitani, X Weng - 2021 IEEE international conference …, 2021 - ieeexplore.ieee.org
Object detection and data association are critical components in multi-object tracking (MOT)
systems. Despite the fact that the two components are dependent on each other, prior works …

3d multi-object tracking: A baseline and new evaluation metrics

X Weng, J Wang, D Held, K Kitani - 2020 IEEE/RSJ …, 2020 - ieeexplore.ieee.org
3D multi-object tracking (MOT) is an essential component for many applications such as
autonomous driving and assistive robotics. Recent work on 3D MOT focuses on develo** …

Adaptive feature fusion: enhancing generalization in deep learning models

N Mungoli - arxiv preprint arxiv:2304.03290, 2023 - arxiv.org
In recent years, deep learning models have demonstrated remarkable success in various
domains, such as computer vision, natural language processing, and speech recognition …

Gnn3dmot: Graph neural network for 3d multi-object tracking with 2d-3d multi-feature learning

X Weng, Y Wang, Y Man… - Proceedings of the IEEE …, 2020 - openaccess.thecvf.com
Abstract 3D Multi-object tracking (MOT) is crucial to autonomous systems. Recent work uses
a standard tracking-by-detection pipeline, where feature extraction is first performed …

Monocular 3d object detection with pseudo-lidar point cloud

X Weng, K Kitani - … of the IEEE/CVF International Conference …, 2019 - openaccess.thecvf.com
Monocular 3D scene understanding tasks, such as object size estimation, heading angle
estimation and 3D localization, is challenging. Successful modern-day methods for 3D …

A survey of deep RL and IL for autonomous driving policy learning

Z Zhu, H Zhao - IEEE Transactions on Intelligent Transportation …, 2021 - ieeexplore.ieee.org
Autonomous driving (AD) agents generate driving policies based on online perception
results, which are obtained at multiple levels of abstraction, eg, behavior planning, motion …