Gaussian process regression for materials and molecules

VL Deringer, AP Bartók, N Bernstein… - Chemical …, 2021 - ACS Publications
We provide an introduction to Gaussian process regression (GPR) machine-learning
methods in computational materials science and chemistry. The focus of the present review …

Four generations of high-dimensional neural network potentials

J Behler - Chemical Reviews, 2021 - ACS Publications
Since their introduction about 25 years ago, machine learning (ML) potentials have become
an important tool in the field of atomistic simulations. After the initial decade, in which neural …

CHGNet as a pretrained universal neural network potential for charge-informed atomistic modelling

B Deng, P Zhong, KJ Jun, J Riebesell, K Han… - Nature Machine …, 2023 - nature.com
Large-scale simulations with complex electron interactions remain one of the greatest
challenges for atomistic modelling. Although classical force fields often fail to describe the …

Machine-learned potentials for next-generation matter simulations

P Friederich, F Häse, J Proppe, A Aspuru-Guzik - Nature Materials, 2021 - nature.com
The choice of simulation methods in computational materials science is driven by a
fundamental trade-off: bridging large time-and length-scales with highly accurate …

Physics-inspired structural representations for molecules and materials

F Musil, A Grisafi, AP Bartók, C Ortner… - Chemical …, 2021 - ACS Publications
The first step in the construction of a regression model or a data-driven analysis, aiming to
predict or elucidate the relationship between the atomic-scale structure of matter and its …

A Euclidean transformer for fast and stable machine learned force fields

JT Frank, OT Unke, KR Müller, S Chmiela - Nature Communications, 2024 - nature.com
Recent years have seen vast progress in the development of machine learned force fields
(MLFFs) based on ab-initio reference calculations. Despite achieving low test errors, the …

Unsupervised learning methods for molecular simulation data

A Glielmo, BE Husic, A Rodriguez, C Clementi… - Chemical …, 2021 - ACS Publications
Unsupervised learning is becoming an essential tool to analyze the increasingly large
amounts of data produced by atomistic and molecular simulations, in material science, solid …

A fourth-generation high-dimensional neural network potential with accurate electrostatics including non-local charge transfer

TW Ko, JA Finkler, S Goedecker, J Behler - Nature communications, 2021 - nature.com
Abstract Machine learning potentials have become an important tool for atomistic
simulations in many fields, from chemistry via molecular biology to materials science. Most of …

Machine learning interatomic potentials and long-range physics

DM Anstine, O Isayev - The Journal of Physical Chemistry A, 2023 - ACS Publications
Advances in machine learned interatomic potentials (MLIPs), such as those using neural
networks, have resulted in short-range models that can infer interaction energies with near …

SpookyNet: Learning force fields with electronic degrees of freedom and nonlocal effects

OT Unke, S Chmiela, M Gastegger, KT Schütt… - Nature …, 2021 - nature.com
Abstract Machine-learned force fields combine the accuracy of ab initio methods with the
efficiency of conventional force fields. However, current machine-learned force fields …