Large language models for software engineering: A systematic literature review
Large Language Models (LLMs) have significantly impacted numerous domains, including
Software Engineering (SE). Many recent publications have explored LLMs applied to …
Software Engineering (SE). Many recent publications have explored LLMs applied to …
Challenges and applications of large language models
Large Language Models (LLMs) went from non-existent to ubiquitous in the machine
learning discourse within a few years. Due to the fast pace of the field, it is difficult to identify …
learning discourse within a few years. Due to the fast pace of the field, it is difficult to identify …
A survey of large language models
Language is essentially a complex, intricate system of human expressions governed by
grammatical rules. It poses a significant challenge to develop capable AI algorithms for …
grammatical rules. It poses a significant challenge to develop capable AI algorithms for …
Parameter-efficient fine-tuning of large-scale pre-trained language models
With the prevalence of pre-trained language models (PLMs) and the pre-training–fine-tuning
paradigm, it has been continuously shown that larger models tend to yield better …
paradigm, it has been continuously shown that larger models tend to yield better …
[HTML][HTML] Large language models encode clinical knowledge
Large language models (LLMs) have demonstrated impressive capabilities, but the bar for
clinical applications is high. Attempts to assess the clinical knowledge of models typically …
clinical applications is high. Attempts to assess the clinical knowledge of models typically …
Large language models encode clinical knowledge
Large language models (LLMs) have demonstrated impressive capabilities in natural
language understanding and generation, but the quality bar for medical and clinical …
language understanding and generation, but the quality bar for medical and clinical …
Few-shot parameter-efficient fine-tuning is better and cheaper than in-context learning
Few-shot in-context learning (ICL) enables pre-trained language models to perform a
previously-unseen task without any gradient-based training by feeding a small number of …
previously-unseen task without any gradient-based training by feeding a small number of …
Efficient large language models: A survey
Large Language Models (LLMs) have demonstrated remarkable capabilities in important
tasks such as natural language understanding and language generation, and thus have the …
tasks such as natural language understanding and language generation, and thus have the …
Recommendation as language processing (rlp): A unified pretrain, personalized prompt & predict paradigm (p5)
For a long time, different recommendation tasks require designing task-specific architectures
and training objectives. As a result, it is hard to transfer the knowledge and representations …
and training objectives. As a result, it is hard to transfer the knowledge and representations …
A comprehensive survey of few-shot learning: Evolution, applications, challenges, and opportunities
Few-shot learning (FSL) has emerged as an effective learning method and shows great
potential. Despite the recent creative works in tackling FSL tasks, learning valid information …
potential. Despite the recent creative works in tackling FSL tasks, learning valid information …