Deep learning modelling techniques: current progress, applications, advantages, and challenges

SF Ahmed, MSB Alam, M Hassan, MR Rozbu… - Artificial Intelligence …, 2023 - Springer
Deep learning (DL) is revolutionizing evidence-based decision-making techniques that can
be applied across various sectors. Specifically, it possesses the ability to utilize two or more …

Graph representation learning in biomedicine and healthcare

MM Li, K Huang, M Zitnik - Nature Biomedical Engineering, 2022 - nature.com
Networks—or graphs—are universal descriptors of systems of interacting elements. In
biomedicine and healthcare, they can represent, for example, molecular interactions …

Unifying large language models and knowledge graphs: A roadmap

S Pan, L Luo, Y Wang, C Chen… - IEEE Transactions on …, 2024 - ieeexplore.ieee.org
Large language models (LLMs), such as ChatGPT and GPT4, are making new waves in the
field of natural language processing and artificial intelligence, due to their emergent ability …

Deep bidirectional language-knowledge graph pretraining

M Yasunaga, A Bosselut, H Ren… - Advances in …, 2022 - proceedings.neurips.cc
Pretraining a language model (LM) on text has been shown to help various downstream
NLP tasks. Recent works show that a knowledge graph (KG) can complement text data …

Large-scale multi-modal pre-trained models: A comprehensive survey

X Wang, G Chen, G Qian, P Gao, XY Wei… - Machine Intelligence …, 2023 - Springer
With the urgent demand for generalized deep models, many pre-trained big models are
proposed, such as bidirectional encoder representations (BERT), vision transformer (ViT) …

A foundation model for clinician-centered drug repurposing

K Huang, P Chandak, Q Wang, S Havaldar, A Vaid… - Nature Medicine, 2024 - nature.com
Drug repurposing—identifying new therapeutic uses for approved drugs—is often a
serendipitous and opportunistic endeavour to expand the use of drugs for new diseases …

Graph neural networks: foundation, frontiers and applications

L Wu, P Cui, J Pei, L Zhao, X Guo - … of the 28th ACM SIGKDD Conference …, 2022 - dl.acm.org
The field of graph neural networks (GNNs) has seen rapid and incredible strides over the
recent years. Graph neural networks, also known as deep learning on graphs, graph …

Graph learning: A survey

F **a, K Sun, S Yu, A Aziz, L Wan… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
Graphs are widely used as a popular representation of the network structure of connected
data. Graph data can be found in a broad spectrum of application domains such as social …

Graph neural networks for natural language processing: A survey

L Wu, Y Chen, K Shen, X Guo, H Gao… - … and Trends® in …, 2023 - nowpublishers.com
Deep learning has become the dominant approach in addressing various tasks in Natural
Language Processing (NLP). Although text inputs are typically represented as a sequence …