[HTML][HTML] Monocular depth estimation using deep learning: A review

A Masoumian, HA Rashwan, J Cristiano, MS Asif… - Sensors, 2022 - mdpi.com
In current decades, significant advancements in robotics engineering and autonomous
vehicles have improved the requirement for precise depth measurements. Depth estimation …

On the synergies between machine learning and binocular stereo for depth estimation from images: A survey

M Poggi, F Tosi, K Batsos, P Mordohai… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
Stereo matching is one of the longest-standing problems in computer vision with close to 40
years of studies and research. Throughout the years the paradigm has shifted from local …

Monovit: Self-supervised monocular depth estimation with a vision transformer

C Zhao, Y Zhang, M Poggi, F Tosi… - … conference on 3D …, 2022 - ieeexplore.ieee.org
Self-supervised monocular depth estimation is an attractive solution that does not require
hard-to-source depth la-bels for training. Convolutional neural networks (CNNs) have …

The temporal opportunist: Self-supervised multi-frame monocular depth

J Watson, O Mac Aodha, V Prisacariu… - Proceedings of the …, 2021 - openaccess.thecvf.com
Self-supervised monocular depth estimation networks are trained to predict scene depth
using nearby frames as a supervision signal during training. However, for many …

Digging into self-supervised monocular depth estimation

C Godard, O Mac Aodha, M Firman… - Proceedings of the …, 2019 - openaccess.thecvf.com
Per-pixel ground-truth depth data is challenging to acquire at scale. To overcome this
limitation, self-supervised learning has emerged as a promising alternative for training …

Hr-depth: High resolution self-supervised monocular depth estimation

X Lyu, L Liu, M Wang, X Kong, L Liu, Y Liu… - Proceedings of the …, 2021 - ojs.aaai.org
Self-supervised learning shows great potential in monocular depth estimation, using image
sequences as the only source of supervision. Although people try to use the high-resolution …

A survey on deep learning techniques for stereo-based depth estimation

H Laga, LV Jospin, F Boussaid… - IEEE transactions on …, 2020 - ieeexplore.ieee.org
Estimating depth from RGB images is a long-standing ill-posed problem, which has been
explored for decades by the computer vision, graphics, and machine learning communities …

On the uncertainty of self-supervised monocular depth estimation

M Poggi, F Aleotti, F Tosi… - Proceedings of the IEEE …, 2020 - openaccess.thecvf.com
Self-supervised paradigms for monocular depth estimation are very appealing since they do
not require ground truth annotations at all. Despite the astonishing results yielded by such …

Towards real-time monocular depth estimation for robotics: A survey

X Dong, MA Garratt, SG Anavatti… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
As an essential component for many autonomous driving and robotic activities such as ego-
motion estimation, obstacle avoidance and scene understanding, monocular depth …

Real-time self-adaptive deep stereo

A Tonioni, F Tosi, M Poggi… - Proceedings of the …, 2019 - openaccess.thecvf.com
Deep convolutional neural networks trained end-to-end are the state-of-the-art methods to
regress dense disparity maps from stereo pairs. These models, however, suffer from a …