A perspective survey on deep transfer learning for fault diagnosis in industrial scenarios: Theories, applications and challenges

W Li, R Huang, J Li, Y Liao, Z Chen, G He… - … Systems and Signal …, 2022 - Elsevier
Abstract Deep Transfer Learning (DTL) is a new paradigm of machine learning, which can
not only leverage the advantages of Deep Learning (DL) in feature representation, but also …

A comprehensive survey of privacy-preserving federated learning: A taxonomy, review, and future directions

X Yin, Y Zhu, J Hu - ACM Computing Surveys (CSUR), 2021 - dl.acm.org
The past four years have witnessed the rapid development of federated learning (FL).
However, new privacy concerns have also emerged during the aggregation of the …

Fault diagnosis in rotating machines based on transfer learning: Literature review

I Misbah, CKM Lee, KL Keung - Knowledge-Based Systems, 2024 - Elsevier
With the emergence of machine learning methods, data-driven fault diagnosis has gained
significant attention in recent years. However, traditional data-driven diagnosis approaches …

Intelligent fault diagnosis of machines with small & imbalanced data: A state-of-the-art review and possible extensions

T Zhang, J Chen, F Li, K Zhang, H Lv, S He, E Xu - ISA transactions, 2022 - Elsevier
The research on intelligent fault diagnosis has yielded remarkable achievements based on
artificial intelligence-related technologies. In engineering scenarios, machines usually work …

The Open Catalyst 2022 (OC22) dataset and challenges for oxide electrocatalysts

R Tran, J Lan, M Shuaibi, BM Wood, S Goyal… - ACS …, 2023 - ACS Publications
The development of machine learning models for electrocatalysts requires a broad set of
training data to enable their use across a wide variety of materials. One class of materials …

A decade survey of transfer learning (2010–2020)

S Niu, Y Liu, J Wang, H Song - IEEE Transactions on Artificial …, 2020 - ieeexplore.ieee.org
Transfer learning (TL) has been successfully applied to many real-world problems that
traditional machine learning (ML) cannot handle, such as image processing, speech …

Applications of machine learning to machine fault diagnosis: A review and roadmap

Y Lei, B Yang, X Jiang, F Jia, N Li, AK Nandi - Mechanical systems and …, 2020 - Elsevier
Intelligent fault diagnosis (IFD) refers to applications of machine learning theories to
machine fault diagnosis. This is a promising way to release the contribution from human …

A systematic review on overfitting control in shallow and deep neural networks

MM Bejani, M Ghatee - Artificial Intelligence Review, 2021 - Springer
Shallow neural networks process the features directly, while deep networks extract features
automatically along with the training. Both models suffer from overfitting or poor …

A comprehensive survey on transfer learning

F Zhuang, Z Qi, K Duan, D **, Y Zhu… - Proceedings of the …, 2020 - ieeexplore.ieee.org
Transfer learning aims at improving the performance of target learners on target domains by
transferring the knowledge contained in different but related source domains. In this way, the …

[HTML][HTML] A state-of-the-art survey on deep learning theory and architectures

MZ Alom, TM Taha, C Yakopcic, S Westberg, P Sidike… - electronics, 2019 - mdpi.com
In recent years, deep learning has garnered tremendous success in a variety of application
domains. This new field of machine learning has been growing rapidly and has been …