A survey of transfer learning

K Weiss, TM Khoshgoftaar, DD Wang - Journal of Big data, 2016 - Springer
Abstract Machine learning and data mining techniques have been used in numerous real-
world applications. An assumption of traditional machine learning methodologies is the …

Collaborative filtering beyond the user-item matrix: A survey of the state of the art and future challenges

Y Shi, M Larson, A Hanjalic - ACM Computing Surveys (CSUR), 2014 - dl.acm.org
Over the past two decades, a large amount of research effort has been devoted to
develo** algorithms that generate recommendations. The resulting research progress has …

A survey on transfer learning

SJ Pan, Q Yang - IEEE Transactions on knowledge and data …, 2009 - ieeexplore.ieee.org
A major assumption in many machine learning and data mining algorithms is that the
training and future data must be in the same feature space and have the same distribution …

Artificial intelligence in recommender systems

Q Zhang, J Lu, Y ** - Complex & Intelligent Systems, 2021 - Springer
Recommender systems provide personalized service support to users by learning their
previous behaviors and predicting their current preferences for particular products. Artificial …

[PDF][PDF] Cross-domain recommendation: An embedding and map** approach.

T Man, H Shen, X **, X Cheng - IJCAI, 2017 - static.aminer.cn
Data sparsity is one of the most challenging problems for recommender systems. One
promising solution to this problem is cross-domain recommendation, ie, leveraging …

Disencdr: Learning disentangled representations for cross-domain recommendation

J Cao, X Lin, X Cong, J Ya, T Liu, B Wang - Proceedings of the 45th …, 2022 - dl.acm.org
Data sparsity is a long-standing problem in recommender systems. To alleviate it, Cross-
Domain Recommendation (CDR) has attracted a surge of interests, which utilizes the rich …

Cross domain recommendation via bi-directional transfer graph collaborative filtering networks

M Liu, J Li, G Li, P Pan - Proceedings of the 29th ACM international …, 2020 - dl.acm.org
Data sparsity is a challenge problem that most modern recommender systems are
confronted with. By leveraging the knowledge from relevant domains, the cross-domain …