Variational quantum algorithms

M Cerezo, A Arrasmith, R Babbush… - Nature Reviews …, 2021 - nature.com
Applications such as simulating complicated quantum systems or solving large-scale linear
algebra problems are very challenging for classical computers, owing to the extremely high …

[HTML][HTML] The variational quantum eigensolver: a review of methods and best practices

J Tilly, H Chen, S Cao, D Picozzi, K Setia, Y Li, E Grant… - Physics Reports, 2022 - Elsevier
The variational quantum eigensolver (or VQE), first developed by Peruzzo et al.(2014), has
received significant attention from the research community in recent years. It uses the …

Quantum error mitigation

Z Cai, R Babbush, SC Benjamin, S Endo… - Reviews of Modern …, 2023 - APS
For quantum computers to successfully solve real-world problems, it is necessary to tackle
the challenge of noise: the errors that occur in elementary physical components due to …

Challenges and opportunities in quantum machine learning

M Cerezo, G Verdon, HY Huang, L Cincio… - Nature Computational …, 2022 - nature.com
At the intersection of machine learning and quantum computing, quantum machine learning
has the potential of accelerating data analysis, especially for quantum data, with …

The power of quantum neural networks

A Abbas, D Sutter, C Zoufal, A Lucchi, A Figalli… - Nature Computational …, 2021 - nature.com
It is unknown whether near-term quantum computers are advantageous for machine
learning tasks. In this work we address this question by trying to understand how powerful …

Generalization in quantum machine learning from few training data

MC Caro, HY Huang, M Cerezo, K Sharma… - Nature …, 2022 - nature.com
Modern quantum machine learning (QML) methods involve variationally optimizing a
parameterized quantum circuit on a training data set, and subsequently making predictions …

Connecting ansatz expressibility to gradient magnitudes and barren plateaus

Z Holmes, K Sharma, M Cerezo, PJ Coles - PRX Quantum, 2022 - APS
Parametrized quantum circuits serve as ansatze for solving variational problems and
provide a flexible paradigm for the programming of near-term quantum computers. Ideally …

A Lie algebraic theory of barren plateaus for deep parameterized quantum circuits

M Ragone, BN Bakalov, F Sauvage, AF Kemper… - Nature …, 2024 - nature.com
Variational quantum computing schemes train a loss function by sending an initial state
through a parametrized quantum circuit, and measuring the expectation value of some …

Training variational quantum algorithms is NP-hard

L Bittel, M Kliesch - Physical review letters, 2021 - APS
Variational quantum algorithms are proposed to solve relevant computational problems on
near term quantum devices. Popular versions are variational quantum eigensolvers and …

A review on quantum approximate optimization algorithm and its variants

K Blekos, D Brand, A Ceschini, CH Chou, RH Li… - Physics Reports, 2024 - Elsevier
Abstract The Quantum Approximate Optimization Algorithm (QAOA) is a highly promising
variational quantum algorithm that aims to solve combinatorial optimization problems that …