Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
A review of convolutional neural networks in computer vision
In computer vision, a series of exemplary advances have been made in several areas
involving image classification, semantic segmentation, object detection, and image super …
involving image classification, semantic segmentation, object detection, and image super …
Emotion recognition in EEG signals using deep learning methods: A review
Emotions are a critical aspect of daily life and serve a crucial role in human decision-making,
planning, reasoning, and other mental states. As a result, they are considered a significant …
planning, reasoning, and other mental states. As a result, they are considered a significant …
Run, don't walk: chasing higher FLOPS for faster neural networks
To design fast neural networks, many works have been focusing on reducing the number of
floating-point operations (FLOPs). We observe that such reduction in FLOPs, however, does …
floating-point operations (FLOPs). We observe that such reduction in FLOPs, however, does …
Efficientvit: Memory efficient vision transformer with cascaded group attention
Vision transformers have shown great success due to their high model capabilities.
However, their remarkable performance is accompanied by heavy computation costs, which …
However, their remarkable performance is accompanied by heavy computation costs, which …
Scconv: Spatial and channel reconstruction convolution for feature redundancy
J Li, Y Wen, L He - … of the IEEE/CVF conference on …, 2023 - openaccess.thecvf.com
Abstract Convolutional Neural Networks (CNNs) have achieved remarkable performance in
various computer vision tasks but this comes at the cost of tremendous computational …
various computer vision tasks but this comes at the cost of tremendous computational …
Repvit: Revisiting mobile cnn from vit perspective
Abstract Recently lightweight Vision Transformers (ViTs) demonstrate superior performance
and lower latency compared with lightweight Convolutional Neural Networks (CNNs) on …
and lower latency compared with lightweight Convolutional Neural Networks (CNNs) on …
Flatten transformer: Vision transformer using focused linear attention
The quadratic computation complexity of self-attention has been a persistent challenge
when applying Transformer models to vision tasks. Linear attention, on the other hand, offers …
when applying Transformer models to vision tasks. Linear attention, on the other hand, offers …
MobileNetV4: universal models for the mobile ecosystem
We present the latest generation of MobileNets: MobileNetV4 (MNv4). They feature
universally-efficient architecture designs for mobile devices. We introduce the Universal …
universally-efficient architecture designs for mobile devices. We introduce the Universal …
Rethinking vision transformers for mobilenet size and speed
With the success of Vision Transformers (ViTs) in computer vision tasks, recent arts try to
optimize the performance and complexity of ViTs to enable efficient deployment on mobile …
optimize the performance and complexity of ViTs to enable efficient deployment on mobile …
Efficientvit: Lightweight multi-scale attention for high-resolution dense prediction
High-resolution dense prediction enables many appealing real-world applications, such as
computational photography, autonomous driving, etc. However, the vast computational cost …
computational photography, autonomous driving, etc. However, the vast computational cost …