Recent advances and applications of deep learning methods in materials science

K Choudhary, B DeCost, C Chen, A Jain… - npj Computational …, 2022 - nature.com
Deep learning (DL) is one of the fastest-growing topics in materials data science, with
rapidly emerging applications spanning atomistic, image-based, spectral, and textual data …

Rechargeable batteries of the future—the state of the art from a BATTERY 2030+ perspective

M Fichtner, K Edström, E Ayerbe… - Advanced Energy …, 2022 - Wiley Online Library
The development of new batteries has historically been achieved through discovery and
development cycles based on the intuition of the researcher, followed by experimental trial …

Representations of materials for machine learning

J Damewood, J Karaguesian, JR Lunger… - Annual Review of …, 2023 - annualreviews.org
High-throughput data generation methods and machine learning (ML) algorithms have
given rise to a new era of computational materials science by learning the relations between …

Recent advances and applications of machine learning in experimental solid mechanics: A review

H **, E Zhang, HD Espinosa - Applied …, 2023 - asmedigitalcollection.asme.org
For many decades, experimental solid mechanics has played a crucial role in characterizing
and understanding the mechanical properties of natural and novel artificial materials …

[HTML][HTML] Artificial intelligence in predicting mechanical properties of composite materials

F Kibrete, T Trzepieciński, HS Gebremedhen… - Journal of Composites …, 2023 - mdpi.com
The determination of mechanical properties plays a crucial role in utilizing composite
materials across multiple engineering disciplines. Recently, there has been substantial …

[HTML][HTML] Machine learning for polymer composites process simulation–a review

S Cassola, M Duhovic, T Schmidt, D May - Composites Part B: Engineering, 2022 - Elsevier
Over the last 20 years Machine Learning (ML) has been applied to a wide variety of
applications in the fields of engineering and computer science. In the field of material …

Perspective: Machine learning in experimental solid mechanics

NR Brodnik, C Muir, N Tulshibagwale, J Rossin… - Journal of the …, 2023 - Elsevier
Experimental solid mechanics is at a pivotal point where machine learning (ML) approaches
are rapidly proliferating into the discovery process due to significant advances in data …

Deep learning object detection in materials science: Current state and future directions

R Jacobs - Computational Materials Science, 2022 - Elsevier
Deep learning-based object detection models have recently found widespread use in
materials science, with rapid progress made in just the past two years. Scanning and …

Pitting corrosion in 316L stainless steel fabricated by laser powder bed fusion additive manufacturing: a review and perspective

T Voisin, R Shi, Y Zhu, Z Qi, M Wu, S Sen-Britain… - Jom, 2022 - Springer
Abstract 316L stainless steel (316L SS) is a flagship material for structural applications in
corrosive environments, having been extensively studied for decades for its favorable …

Recent advances in multiscale digital rock reconstruction, flow simulation, and experiments during shale gas production

Y Yang, F Liu, Q Zhang, Y Li, K Wang, Q Xu… - Energy & …, 2023 - ACS Publications
The complex and multiscale nature of shale gas transport imposes new challenges to the
already well-developed techniques for conventional reservoirs, especially digital core …