Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Tool learning with foundation models
Humans possess an extraordinary ability to create and utilize tools. With the advent of
foundation models, artificial intelligence systems have the potential to be equally adept in …
foundation models, artificial intelligence systems have the potential to be equally adept in …
Vision-language models in remote sensing: Current progress and future trends
The remarkable achievements of ChatGPT and Generative Pre-trained Transformer 4 (GPT-
4) have sparked a wave of interest and research in the field of large language models …
4) have sparked a wave of interest and research in the field of large language models …
Open-vocabulary panoptic segmentation with text-to-image diffusion models
We present ODISE: Open-vocabulary DIffusion-based panoptic SEgmentation, which unifies
pre-trained text-image diffusion and discriminative models to perform open-vocabulary …
pre-trained text-image diffusion and discriminative models to perform open-vocabulary …
Vision-language models for vision tasks: A survey
Most visual recognition studies rely heavily on crowd-labelled data in deep neural networks
(DNNs) training, and they usually train a DNN for each single visual recognition task …
(DNNs) training, and they usually train a DNN for each single visual recognition task …
Multimodal foundation models: From specialists to general-purpose assistants
Neural compression is the application of neural networks and other machine learning
methods to data compression. Recent advances in statistical machine learning have opened …
methods to data compression. Recent advances in statistical machine learning have opened …
Side adapter network for open-vocabulary semantic segmentation
This paper presents a new framework for open-vocabulary semantic segmentation with the
pre-trained vision-language model, named SAN. Our approach models the semantic …
pre-trained vision-language model, named SAN. Our approach models the semantic …
Convolutions die hard: Open-vocabulary segmentation with single frozen convolutional clip
Open-vocabulary segmentation is a challenging task requiring segmenting and recognizing
objects from an open set of categories in diverse environments. One way to address this …
objects from an open set of categories in diverse environments. One way to address this …
Maple: Multi-modal prompt learning
Pre-trained vision-language (VL) models such as CLIP have shown excellent generalization
ability to downstream tasks. However, they are sensitive to the choice of input text prompts …
ability to downstream tasks. However, they are sensitive to the choice of input text prompts …
Self-regulating prompts: Foundational model adaptation without forgetting
Prompt learning has emerged as an efficient alternative for fine-tuning foundational models,
such as CLIP, for various downstream tasks. Conventionally trained using the task-specific …
such as CLIP, for various downstream tasks. Conventionally trained using the task-specific …
Open-vocabulary semantic segmentation with mask-adapted clip
Open-vocabulary semantic segmentation aims to segment an image into semantic regions
according to text descriptions, which may not have been seen during training. Recent two …
according to text descriptions, which may not have been seen during training. Recent two …