High-entropy nanoparticles: Synthesis-structure-property relationships and data-driven discovery

Y Yao, Q Dong, A Brozena, J Luo, J Miao, M Chi… - Science, 2022 - science.org
High-entropy nanoparticles have become a rapidly growing area of research in recent years.
Because of their multielemental compositions and unique high-entropy mixing states (ie …

Small data machine learning in materials science

P Xu, X Ji, M Li, W Lu - npj Computational Materials, 2023 - nature.com
This review discussed the dilemma of small data faced by materials machine learning. First,
we analyzed the limitations brought by small data. Then, the workflow of materials machine …

Nanoparticle synthesis assisted by machine learning

H Tao, T Wu, M Aldeghi, TC Wu… - Nature reviews …, 2021 - nature.com
Many properties of nanoparticles are governed by their shape, size, polydispersity and
surface chemistry. To apply nanoparticles in chemical sensing, medical diagnostics …

Artificial intelligence and machine learning in design of mechanical materials

K Guo, Z Yang, CH Yu, MJ Buehler - Materials Horizons, 2021 - pubs.rsc.org
Artificial intelligence, especially machine learning (ML) and deep learning (DL) algorithms,
is becoming an important tool in the fields of materials and mechanical engineering …

Knowledge-integrated machine learning for materials: lessons from gameplaying and robotics

K Hippalgaonkar, Q Li, X Wang, JW Fisher III… - Nature Reviews …, 2023 - nature.com
As materials researchers increasingly embrace machine-learning (ML) methods, it is natural
to wonder what lessons can be learned from other fields undergoing similar developments …

Machine learning assisted materials design and discovery for rechargeable batteries

Y Liu, B Guo, X Zou, Y Li, S Shi - Energy Storage Materials, 2020 - Elsevier
Abstract Machine learning plays an important role in accelerating the discovery and design
process for novel electrochemical energy storage materials. This review aims to provide the …

Big-data science in porous materials: materials genomics and machine learning

KM Jablonka, D Ongari, SM Moosavi, B Smit - Chemical reviews, 2020 - ACS Publications
By combining metal nodes with organic linkers we can potentially synthesize millions of
possible metal–organic frameworks (MOFs). The fact that we have so many materials opens …

Emerging materials intelligence ecosystems propelled by machine learning

R Batra, L Song, R Ramprasad - Nature Reviews Materials, 2021 - nature.com
The age of cognitive computing and artificial intelligence (AI) is just dawning. Inspired by its
successes and promises, several AI ecosystems are blossoming, many of them within the …

Opportunities and challenges for machine learning in materials science

D Morgan, R Jacobs - Annual Review of Materials Research, 2020 - annualreviews.org
Advances in machine learning have impacted myriad areas of materials science, such as
the discovery of novel materials and the improvement of molecular simulations, with likely …

Roadmap on machine learning in electronic structure

HJ Kulik, T Hammerschmidt, J Schmidt, S Botti… - Electronic …, 2022 - iopscience.iop.org
In recent years, we have been witnessing a paradigm shift in computational materials
science. In fact, traditional methods, mostly developed in the second half of the XXth century …