Deep transfer learning for bearing fault diagnosis: A systematic review since 2016

X Chen, R Yang, Y Xue, M Huang… - IEEE Transactions …, 2023 - ieeexplore.ieee.org
The traditional deep learning-based bearing fault diagnosis approaches assume that the
training and test data follow the same distribution. This assumption, however, is not always …

A perspective survey on deep transfer learning for fault diagnosis in industrial scenarios: Theories, applications and challenges

W Li, R Huang, J Li, Y Liao, Z Chen, G He… - … Systems and Signal …, 2022 - Elsevier
Abstract Deep Transfer Learning (DTL) is a new paradigm of machine learning, which can
not only leverage the advantages of Deep Learning (DL) in feature representation, but also …

[HTML][HTML] A systematic review of rolling bearing fault diagnoses based on deep learning and transfer learning: Taxonomy, overview, application, open challenges …

M Hakim, AAB Omran, AN Ahmed, M Al-Waily… - Ain Shams Engineering …, 2023 - Elsevier
Rolling bearing fault detection is critical for improving production efficiency and lowering
accident rates in complicated mechanical systems, as well as huge monitoring data, posing …

Intelligent fault diagnosis of machines with small & imbalanced data: A state-of-the-art review and possible extensions

T Zhang, J Chen, F Li, K Zhang, H Lv, S He, E Xu - ISA transactions, 2022 - Elsevier
The research on intelligent fault diagnosis has yielded remarkable achievements based on
artificial intelligence-related technologies. In engineering scenarios, machines usually work …

Fault diagnosis in rotating machines based on transfer learning: Literature review

I Misbah, CKM Lee, KL Keung - Knowledge-Based Systems, 2024 - Elsevier
With the emergence of machine learning methods, data-driven fault diagnosis has gained
significant attention in recent years. However, traditional data-driven diagnosis approaches …

An optimized CNN-BiLSTM network for bearing fault diagnosis under multiple working conditions with limited training samples

B Song, Y Liu, J Fang, W Liu, M Zhong, X Liu - Neurocomputing, 2024 - Elsevier
Aiming at limitations in fully exploiting the temporal correlation features of the original
signals, expensive cost in parameter tuning, and difficulties in obtaining sufficient training …

Applications of unsupervised deep transfer learning to intelligent fault diagnosis: A survey and comparative study

Z Zhao, Q Zhang, X Yu, C Sun, S Wang… - IEEE Transactions …, 2021 - ieeexplore.ieee.org
Recent progress on intelligent fault diagnosis (IFD) has greatly depended on deep
representation learning and plenty of labeled data. However, machines often operate with …

A survey of transfer learning for machinery diagnostics and prognostics

S Yao, Q Kang, MC Zhou, MJ Rawa… - Artificial Intelligence …, 2023 - Springer
In industrial manufacturing systems, failures of machines caused by faults in their key
components greatly influence operational safety and system reliability. Many data-driven …

Deep learning for prognostics and health management: State of the art, challenges, and opportunities

B Rezaeianjouybari, Y Shang - Measurement, 2020 - Elsevier
Improving the reliability of engineered systems is a crucial problem in many applications in
various engineering fields, such as aerospace, nuclear energy, and water declination …

A multi-source information transfer learning method with subdomain adaptation for cross-domain fault diagnosis

J Tian, D Han, M Li, P Shi - Knowledge-Based Systems, 2022 - Elsevier
In modern industrial equipment maintenance, transfer learning is a promising tool that has
been widely utilized to solve the problem of the insufficient generalization ability of …