Deep learning in environmental remote sensing: Achievements and challenges

Q Yuan, H Shen, T Li, Z Li, S Li, Y Jiang, H Xu… - Remote sensing of …, 2020 - Elsevier
Various forms of machine learning (ML) methods have historically played a valuable role in
environmental remote sensing research. With an increasing amount of “big data” from earth …

[HTML][HTML] High-quality vegetation index product generation: A review of NDVI time series reconstruction techniques

S Li, L Xu, Y **g, H Yin, X Li, X Guan - International Journal of Applied …, 2021 - Elsevier
Normalized difference vegetation index (NDVI) derived from satellites has been ubiquitously
utilized in the field of remote sensing. Nevertheless, there are multitudinous contaminations …

Hyperspectral image denoising: From model-driven, data-driven, to model-data-driven

Q Zhang, Y Zheng, Q Yuan, M Song… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
Mixed noise pollution in HSI severely disturbs subsequent interpretations and applications.
In this technical review, we first give the noise analysis in different noisy HSIs and conclude …

[HTML][HTML] Cloud removal in Sentinel-2 imagery using a deep residual neural network and SAR-optical data fusion

A Meraner, P Ebel, XX Zhu, M Schmitt - ISPRS Journal of Photogrammetry …, 2020 - Elsevier
Optical remote sensing imagery is at the core of many Earth observation activities. The
regular, consistent and global-scale nature of the satellite data is exploited in many …

How can Big Data and machine learning benefit environment and water management: a survey of methods, applications, and future directions

AY Sun, BR Scanlon - Environmental Research Letters, 2019 - iopscience.iop.org
Big Data and machine learning (ML) technologies have the potential to impact many facets
of environment and water management (EWM). Big Data are information assets …

[HTML][HTML] Temporal convolutional neural network for the classification of satellite image time series

C Pelletier, GI Webb, F Petitjean - Remote Sensing, 2019 - mdpi.com
Latest remote sensing sensors are capable of acquiring high spatial and spectral Satellite
Image Time Series (SITS) of the world. These image series are a key component of …

Review of pixel-level remote sensing image fusion based on deep learning

Z Wang, Y Ma, Y Zhang - Information Fusion, 2023 - Elsevier
The booming development of remote sensing images in many visual tasks has led to an
increasing demand for obtaining images with more precise details. However, it is impractical …

Hyperspectral image denoising employing a spatial–spectral deep residual convolutional neural network

Q Yuan, Q Zhang, J Li, H Shen… - IEEE Transactions on …, 2018 - ieeexplore.ieee.org
Hyperspectral image (HSI) denoising is a crucial preprocessing procedure to improve the
performance of the subsequent HSI interpretation and applications. In this paper, a novel …

A comprehensive survey on imputation of missing data in internet of things

D Adhikari, W Jiang, J Zhan, Z He, DB Rawat… - ACM Computing …, 2022 - dl.acm.org
The Internet of Things (IoT) is enabled by the latest developments in smart sensors,
communication technologies, and Internet protocols with broad applications. Collecting data …

Cooperated spectral low-rankness prior and deep spatial prior for HSI unsupervised denoising

Q Zhang, Q Yuan, M Song, H Yu… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Model-driven methods and data-driven methods have been widely developed for
hyperspectral image (HSI) denoising. However, there are pros and cons in both model …