Self-driving laboratories for chemistry and materials science

G Tom, SP Schmid, SG Baird, Y Cao, K Darvish… - Chemical …, 2024 - ACS Publications
Self-driving laboratories (SDLs) promise an accelerated application of the scientific method.
Through the automation of experimental workflows, along with autonomous experimental …

Autonomous chemical experiments: Challenges and perspectives on establishing a self-driving lab

M Seifrid, R Pollice, A Aguilar-Granda… - Accounts of Chemical …, 2022 - ACS Publications
Conspectus We must accelerate the pace at which we make technological advancements to
address climate change and disease risks worldwide. This swifter pace of discovery requires …

Simulation intelligence: Towards a new generation of scientific methods

A Lavin, D Krakauer, H Zenil, J Gottschlich… - arxiv preprint arxiv …, 2021 - arxiv.org
The original" Seven Motifs" set forth a roadmap of essential methods for the field of scientific
computing, where a motif is an algorithmic method that captures a pattern of computation …

From characterization to discovery: artificial intelligence, machine learning and high-throughput experiments for heterogeneous catalyst design

J Benavides-Hernández, F Dumeignil - ACS Catalysis, 2024 - ACS Publications
This review paper delves into synergistic integration of artificial intelligence (AI) and
machine learning (ML) with high-throughput experimentation (HTE) in the field of …

Machine learning–accelerated design and synthesis of polyelemental heterostructures

CB Wahl, M Aykol, JH Swisher, JH Montoya… - Science …, 2021 - science.org
In materials discovery efforts, synthetic capabilities far outpace the ability to extract
meaningful data from them. To bridge this gap, machine learning methods are necessary to …

ChemOS 2.0: An orchestration architecture for chemical self-driving laboratories

M Sim, MG Vakili, F Strieth-Kalthoff, H Hao… - Matter, 2024 - cell.com
Summary Self-driving laboratories (SDLs), which combine automated experimental
hardware with computational experiment planning, have emerged as powerful tools for …

Bayesian optimization with adaptive surrogate models for automated experimental design

B Lei, TQ Kirk, A Bhattacharya, D Pati, X Qian… - Npj Computational …, 2021 - nature.com
Bayesian optimization (BO) is an indispensable tool to optimize objective functions that
either do not have known functional forms or are expensive to evaluate. Currently, optimal …

Modern applications of machine learning in quantum sciences

A Dawid, J Arnold, B Requena, A Gresch… - arxiv preprint arxiv …, 2022 - arxiv.org
In these Lecture Notes, we provide a comprehensive introduction to the most recent
advances in the application of machine learning methods in quantum sciences. We cover …

Bayesian optimization of nanoporous materials

A Deshwal, CM Simon, JR Doppa - Molecular Systems Design & …, 2021 - pubs.rsc.org
Nanoporous materials (NPMs) could be used to store, capture, and sense many different
gases. Given an adsorption task, we often wish to search a library of NPMs for the one with …

Bayesian optimization with known experimental and design constraints for chemistry applications

RJ Hickman, M Aldeghi, F Häse, A Aspuru-Guzik - Digital Discovery, 2022 - pubs.rsc.org
Optimization strategies driven by machine learning, such as Bayesian optimization, are
being explored across experimental sciences as an efficient alternative to traditional design …