Causal inference for time series

J Runge, A Gerhardus, G Varando, V Eyring… - Nature Reviews Earth & …, 2023 - nature.com
Many research questions in Earth and environmental sciences are inherently causal,
requiring robust analyses to establish whether and how changes in one variable cause …

Discovering causal relations and equations from data

G Camps-Valls, A Gerhardus, U Ninad, G Varando… - Physics Reports, 2023 - Elsevier
Physics is a field of science that has traditionally used the scientific method to answer
questions about why natural phenomena occur and to make testable models that explain the …

D'ya like dags? a survey on structure learning and causal discovery

MJ Vowels, NC Camgoz, R Bowden - ACM Computing Surveys, 2022 - dl.acm.org
Causal reasoning is a crucial part of science and human intelligence. In order to discover
causal relationships from data, we need structure discovery methods. We provide a review …

Identifiability guarantees for causal disentanglement from soft interventions

J Zhang, K Greenewald, C Squires… - Advances in …, 2023 - proceedings.neurips.cc
Causal disentanglement aims to uncover a representation of data using latent variables that
are interrelated through a causal model. Such a representation is identifiable if the latent …

From hype to reality: data science enabling personalized medicine

H Fröhlich, R Balling, N Beerenwinkel, O Kohlbacher… - BMC medicine, 2018 - Springer
Abstract Background Personalized, precision, P4, or stratified medicine is understood as a
medical approach in which patients are stratified based on their disease subtype, risk …

Characterizing manipulation from AI systems

M Carroll, A Chan, H Ashton, D Krueger - … of the 3rd ACM Conference on …, 2023 - dl.acm.org
Manipulation is a concern in many domains, such as social media, advertising, and
chatbots. As AI systems mediate more of our digital interactions, it is important to understand …

[LIBRO][B] Network psychometrics with R: A guide for behavioral and social scientists

AM Isvoranu, S Epskamp, L Waldorp, D Borsboom - 2022 - books.google.com
A systematic, innovative introduction to the field of network analysis, Network Psychometrics
with R: A Guide for Behavioral and Social Scientists provides a comprehensive overview of …

Differentiable causal discovery from interventional data

P Brouillard, S Lachapelle, A Lacoste… - Advances in …, 2020 - proceedings.neurips.cc
Learning a causal directed acyclic graph from data is a challenging task that involves
solving a combinatorial problem for which the solution is not always identifiable. A new line …

Deep learning of causal structures in high dimensions under data limitations

K Lagemann, C Lagemann, B Taschler… - Nature machine …, 2023 - nature.com
Causal learning is a key challenge in scientific artificial intelligence as it allows researchers
to go beyond purely correlative or predictive analyses towards learning underlying cause …

Amortized causal discovery: Learning to infer causal graphs from time-series data

S Löwe, D Madras, R Zemel… - Conference on Causal …, 2022 - proceedings.mlr.press
On time-series data, most causal discovery methods fit a new model whenever they
encounter samples from a new underlying causal graph. However, these samples often …