Small data machine learning in materials science

P Xu, X Ji, M Li, W Lu - npj Computational Materials, 2023 - nature.com
This review discussed the dilemma of small data faced by materials machine learning. First,
we analyzed the limitations brought by small data. Then, the workflow of materials machine …

Knowledge-integrated machine learning for materials: lessons from gameplaying and robotics

K Hippalgaonkar, Q Li, X Wang, JW Fisher III… - Nature Reviews …, 2023 - nature.com
As materials researchers increasingly embrace machine-learning (ML) methods, it is natural
to wonder what lessons can be learned from other fields undergoing similar developments …

Applied machine learning as a driver for polymeric biomaterials design

SM McDonald, EK Augustine, Q Lanners… - Nature …, 2023 - nature.com
Polymers are ubiquitous to almost every aspect of modern society and their use in medical
products is similarly pervasive. Despite this, the diversity in commercial polymers used in …

Data‐Driven Materials Innovation and Applications

Z Wang, Z Sun, H Yin, X Liu, J Wang, H Zhao… - Advanced …, 2022 - Wiley Online Library
Owing to the rapid developments to improve the accuracy and efficiency of both
experimental and computational investigative methodologies, the massive amounts of data …

Cross-property deep transfer learning framework for enhanced predictive analytics on small materials data

V Gupta, K Choudhary, F Tavazza, C Campbell… - Nature …, 2021 - nature.com
Artificial intelligence (AI) and machine learning (ML) have been increasingly used in
materials science to build predictive models and accelerate discovery. For selected …

Polymer informatics: Current status and critical next steps

L Chen, G Pilania, R Batra, TD Huan, C Kim… - Materials Science and …, 2021 - Elsevier
Artificial intelligence (AI) based approaches are beginning to impact several domains of
human life, science and technology. Polymer informatics is one such domain where AI and …

Material evolution with nanotechnology, nanoarchitectonics, and materials informatics: what will be the next paradigm shift in nanoporous materials?

W Chaikittisilp, Y Yamauchi, K Ariga - Advanced Materials, 2022 - Wiley Online Library
Materials science and chemistry have played a central and significant role in advancing
society. With the shift toward sustainable living, it is anticipated that the development of …

Representations of materials for machine learning

J Damewood, J Karaguesian, JR Lunger… - Annual Review of …, 2023 - annualreviews.org
High-throughput data generation methods and machine learning (ML) algorithms have
given rise to a new era of computational materials science by learning the relations between …

[HTML][HTML] Battery safety: Machine learning-based prognostics

J Zhao, X Feng, Q Pang, M Fowler, Y Lian… - Progress in Energy and …, 2024 - Elsevier
Lithium-ion batteries play a pivotal role in a wide range of applications, from electronic
devices to large-scale electrified transportation systems and grid-scale energy storage …

A graph representation of molecular ensembles for polymer property prediction

M Aldeghi, CW Coley - Chemical Science, 2022 - pubs.rsc.org
Synthetic polymers are versatile and widely used materials. Similar to small organic
molecules, a large chemical space of such materials is hypothetically accessible …