Low-rank and sparse representation for hyperspectral image processing: A review

J Peng, W Sun, HC Li, W Li, X Meng… - IEEE Geoscience and …, 2021 - ieeexplore.ieee.org
Combining rich spectral and spatial information, a hyperspectral image (HSI) can provide a
more comprehensive characterization of the Earth's surface. To better exploit HSIs, a large …

Advances in hyperspectral image and signal processing: A comprehensive overview of the state of the art

P Ghamisi, N Yokoya, J Li, W Liao, S Liu… - … and Remote Sensing …, 2017 - ieeexplore.ieee.org
Recent advances in airborne and spaceborne hyperspectral imaging technology have
provided end users with rich spectral, spatial, and temporal information. They have made a …

Spectral enhanced rectangle transformer for hyperspectral image denoising

M Li, J Liu, Y Fu, Y Zhang… - Proceedings of the IEEE …, 2023 - openaccess.thecvf.com
Denoising is a crucial step for hyperspectral image (HSI) applications. Though witnessing
the great power of deep learning, existing HSI denoising methods suffer from limitations in …

Interpretable hyperspectral artificial intelligence: When nonconvex modeling meets hyperspectral remote sensing

D Hong, W He, N Yokoya, J Yao, L Gao… - … and Remote Sensing …, 2021 - ieeexplore.ieee.org
Hyperspectral (HS) imaging, also known as image spectrometry, is a landmark technique in
geoscience and remote sensing (RS). In the past decade, enormous efforts have been made …

Non-local meets global: An iterative paradigm for hyperspectral image restoration

W He, Q Yao, C Li, N Yokoya, Q Zhao… - … on Pattern Analysis …, 2020 - ieeexplore.ieee.org
Non-local low-rank tensor approximation has been developed as a state-of-the-art method
for hyperspectral image (HSI) restoration, which includes the tasks of denoising …

Infrared small target detection via nonconvex tensor fibered rank approximation

X Kong, C Yang, S Cao, C Li… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
Infrared small target detection plays an important role in precision guidance, infrared
warning, and other applications. The infrared patch-tensor (IPT) model has good detection …

Cooperated spectral low-rankness prior and deep spatial prior for HSI unsupervised denoising

Q Zhang, Q Yuan, M Song, H Yu… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Model-driven methods and data-driven methods have been widely developed for
hyperspectral image (HSI) denoising. However, there are pros and cons in both model …

Hyperspectral image restoration via total variation regularized low-rank tensor decomposition

Y Wang, J Peng, Q Zhao, Y Leung… - IEEE Journal of …, 2017 - ieeexplore.ieee.org
Hyperspectral images (HSIs) are often corrupted by a mixture of several types of noise
during the acquisition process, eg, Gaussian noise, impulse noise, dead lines, stripes, etc …

Fast hyperspectral image denoising and inpainting based on low-rank and sparse representations

L Zhuang, JM Bioucas-Dias - IEEE Journal of Selected Topics …, 2018 - ieeexplore.ieee.org
This paper introduces two very fast and competitive hyperspectral image (HSI) restoration
algorithms: fast hyperspectral denoising (FastHyDe), a denoising algorithm able to cope with …

Eigenimage2Eigenimage (E2E): A self-supervised deep learning network for hyperspectral image denoising

L Zhuang, MK Ng, L Gao, J Michalski… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
The performance of deep learning-based denoisers highly depends on the quantity and
quality of training data. However, paired noisy–clean training images are generally …