A comprehensive survey on trustworthy graph neural networks: Privacy, robustness, fairness, and explainability
Graph neural networks (GNNs) have made rapid developments in the recent years. Due to
their great ability in modeling graph-structured data, GNNs are vastly used in various …
their great ability in modeling graph-structured data, GNNs are vastly used in various …
AI fairness in data management and analytics: A review on challenges, methodologies and applications
P Chen, L Wu, L Wang - Applied Sciences, 2023 - mdpi.com
This article provides a comprehensive overview of the fairness issues in artificial intelligence
(AI) systems, delving into its background, definition, and development process. The article …
(AI) systems, delving into its background, definition, and development process. The article …
Fairness in graph mining: A survey
Graph mining algorithms have been playing a significant role in myriad fields over the years.
However, despite their promising performance on various graph analytical tasks, most of …
However, despite their promising performance on various graph analytical tasks, most of …
Demystifying structural disparity in graph neural networks: Can one size fit all?
Abstract Recent studies on Graph Neural Networks (GNNs) provide both empirical and
theoretical evidence supporting their effectiveness in capturing structural patterns on both …
theoretical evidence supporting their effectiveness in capturing structural patterns on both …
Trustworthy graph neural networks: Aspects, methods and trends
Graph neural networks (GNNs) have emerged as a series of competent graph learning
methods for diverse real-world scenarios, ranging from daily applications like …
methods for diverse real-world scenarios, ranging from daily applications like …
Graph data augmentation for graph machine learning: A survey
Data augmentation has recently seen increased interest in graph machine learning given its
demonstrated ability to improve model performance and generalization by added training …
demonstrated ability to improve model performance and generalization by added training …
Interpreting unfairness in graph neural networks via training node attribution
Abstract Graph Neural Networks (GNNs) have emerged as the leading paradigm for solving
graph analytical problems in various real-world applications. Nevertheless, GNNs could …
graph analytical problems in various real-world applications. Nevertheless, GNNs could …
[PDF][PDF] Learning fair graph representations via automated data augmentations
We consider fair graph representation learning via data augmentations. While this direction
has been explored previously, existing methods invariably rely on certain assumptions on …
has been explored previously, existing methods invariably rely on certain assumptions on …
Toward fair graph neural networks via real counterfactual samples
Graph neural networks (GNNs) have become pivotal in various critical decision-making
scenarios due to their exceptional performance. However, concerns have been raised that …
scenarios due to their exceptional performance. However, concerns have been raised that …
Representation bias in data: A survey on identification and resolution techniques
Data-driven algorithms are only as good as the data they work with, while datasets,
especially social data, often fail to represent minorities adequately. Representation Bias in …
especially social data, often fail to represent minorities adequately. Representation Bias in …