The evolution of distributed systems for graph neural networks and their origin in graph processing and deep learning: A survey

J Vatter, R Mayer, HA Jacobsen - ACM Computing Surveys, 2023 - dl.acm.org
Graph neural networks (GNNs) are an emerging research field. This specialized deep
neural network architecture is capable of processing graph structured data and bridges the …

Large language models on graphs: A comprehensive survey

B **, G Liu, C Han, M Jiang, H Ji… - IEEE Transactions on …, 2024 - ieeexplore.ieee.org
Large language models (LLMs), such as GPT4 and LLaMA, are creating significant
advancements in natural language processing, due to their strong text encoding/decoding …

Exploring the potential of large language models (llms) in learning on graphs

Z Chen, H Mao, H Li, W **, H Wen, X Wei… - ACM SIGKDD …, 2024 - dl.acm.org
Learning on Graphs has attracted immense attention due to its wide real-world applications.
The most popular pipeline for learning on graphs with textual node attributes primarily relies …

Self-supervised learning of graph neural networks: A unified review

Y **e, Z Xu, J Zhang, Z Wang… - IEEE transactions on …, 2022 - ieeexplore.ieee.org
Deep models trained in supervised mode have achieved remarkable success on a variety of
tasks. When labeled samples are limited, self-supervised learning (SSL) is emerging as a …

Community detection in graphs

S Fortunato - Physics reports, 2010 - Elsevier
The modern science of networks has brought significant advances to our understanding of
complex systems. One of the most relevant features of graphs representing real systems is …

Self-supervised learning on graphs: Contrastive, generative, or predictive

L Wu, H Lin, C Tan, Z Gao, SZ Li - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
Deep learning on graphs has recently achieved remarkable success on a variety of tasks,
while such success relies heavily on the massive and carefully labeled data. However …

S2ORC: The semantic scholar open research corpus

K Lo, LL Wang, M Neumann, R Kinney… - arxiv preprint arxiv …, 2019 - arxiv.org
We introduce S2ORC, a large corpus of 81.1 M English-language academic papers
spanning many academic disciplines. The corpus consists of rich metadata, paper abstracts …

Collective classification in network data

P Sen, G Namata, M Bilgic, L Getoor, B Galligher… - AI magazine, 2008 - ojs.aaai.org
Many real-world applications produce networked data such as the world-wide web
(hypertext documents connected via hyperlinks), social networks (for example, people …

Deep gaussian embedding of graphs: Unsupervised inductive learning via ranking

A Bojchevski, S Günnemann - arxiv preprint arxiv:1707.03815, 2017 - arxiv.org
Methods that learn representations of nodes in a graph play a critical role in network
analysis since they enable many downstream learning tasks. We propose Graph2Gauss-an …

Vertical federated learning: Concepts, advances, and challenges

Y Liu, Y Kang, T Zou, Y Pu, Y He, X Ye… - … on Knowledge and …, 2024 - ieeexplore.ieee.org
Vertical Federated Learning (VFL) is a federated learning setting where multiple parties with
different features about the same set of users jointly train machine learning models without …