The emerging trends of multi-label learning

W Liu, H Wang, X Shen… - IEEE transactions on …, 2021 - ieeexplore.ieee.org
Exabytes of data are generated daily by humans, leading to the growing needs for new
efforts in dealing with the grand challenges for multi-label learning brought by big data. For …

Survey on multi-output learning

D Xu, Y Shi, IW Tsang, YS Ong… - IEEE transactions on …, 2019 - ieeexplore.ieee.org
The aim of multi-output learning is to simultaneously predict multiple outputs given an input.
It is an important learning problem for decision-making since making decisions in the real …

Asymmetric loss for multi-label classification

T Ridnik, E Ben-Baruch, N Zamir… - Proceedings of the …, 2021 - openaccess.thecvf.com
In a typical multi-label setting, a picture contains on average few positive labels, and many
negative ones. This positive-negative imbalance dominates the optimization process, and …

General multi-label image classification with transformers

J Lanchantin, T Wang, V Ordonez… - Proceedings of the …, 2021 - openaccess.thecvf.com
Multi-label image classification is the task of predicting a set of labels corresponding to
objects, attributes or other entities present in an image. In this work we propose the …

Asymmetric loss for multi-label classification

E Ben-Baruch, T Ridnik, N Zamir, A Noy… - arxiv preprint arxiv …, 2020 - arxiv.org
In a typical multi-label setting, a picture contains on average few positive labels, and many
negative ones. This positive-negative imbalance dominates the optimization process, and …

Attentionxml: Label tree-based attention-aware deep model for high-performance extreme multi-label text classification

R You, Z Zhang, Z Wang, S Dai… - Advances in neural …, 2019 - proceedings.neurips.cc
Extreme multi-label text classification (XMTC) is an important problem in the era of {\it big
data}, for tagging a given text with the most relevant multiple labels from an extremely large …

Taming pretrained transformers for extreme multi-label text classification

WC Chang, HF Yu, K Zhong, Y Yang… - Proceedings of the 26th …, 2020 - dl.acm.org
We consider the extreme multi-label text classification (XMC) problem: given an input text,
return the most relevant labels from a large label collection. For example, the input text could …

Contrastive learning-enhanced nearest neighbor mechanism for multi-label text classification

R Wang, X Dai - Proceedings of the 60th Annual Meeting of the …, 2022 - aclanthology.org
Abstract Multi-Label Text Classification (MLTC) is a fundamental and challenging task in
natural language processing. Previous studies mainly focus on learning text representation …

Inverse cooking: Recipe generation from food images

A Salvador, M Drozdzal… - Proceedings of the …, 2019 - openaccess.thecvf.com
People enjoy food photography because they appreciate food. Behind each meal there is a
story described in a complex recipe and, unfortunately, by simply looking at a food image we …

Balancing methods for multi-label text classification with long-tailed class distribution

Y Huang, B Giledereli, A Köksal, A Özgür… - arxiv preprint arxiv …, 2021 - arxiv.org
Multi-label text classification is a challenging task because it requires capturing label
dependencies. It becomes even more challenging when class distribution is long-tailed …