A survey on data-driven network intrusion detection

D Chou, M Jiang - ACM Computing Surveys (CSUR), 2021 - dl.acm.org
Data-driven network intrusion detection (NID) has a tendency towards minority attack
classes compared to normal traffic. Many datasets are collected in simulated environments …

The many faces of robustness: A critical analysis of out-of-distribution generalization

D Hendrycks, S Basart, N Mu… - Proceedings of the …, 2021 - openaccess.thecvf.com
We introduce four new real-world distribution shift datasets consisting of changes in image
style, image blurriness, geographic location, camera operation, and more. With our new …

Randaugment: Practical automated data augmentation with a reduced search space

ED Cubuk, B Zoph, J Shlens… - Proceedings of the IEEE …, 2020 - openaccess.thecvf.com
Recent work on automated augmentation strategies has led to state-of-the-art results in
image classification and object detection. An obstacle to a large-scale adoption of these …

Continual test-time domain adaptation

Q Wang, O Fink, L Van Gool… - Proceedings of the IEEE …, 2022 - openaccess.thecvf.com
Test-time domain adaptation aims to adapt a source pre-trained model to a target domain
without using any source data. Existing works mainly consider the case where the target …

Underspecification presents challenges for credibility in modern machine learning

A D'Amour, K Heller, D Moldovan, B Adlam… - Journal of Machine …, 2022 - jmlr.org
Machine learning (ML) systems often exhibit unexpectedly poor behavior when they are
deployed in real-world domains. We identify underspecification in ML pipelines as a key …

Augmix: A simple data processing method to improve robustness and uncertainty

D Hendrycks, N Mu, ED Cubuk, B Zoph… - arxiv preprint arxiv …, 2019 - arxiv.org
Modern deep neural networks can achieve high accuracy when the training distribution and
test distribution are identically distributed, but this assumption is frequently violated in …

Square attack: a query-efficient black-box adversarial attack via random search

M Andriushchenko, F Croce, N Flammarion… - European conference on …, 2020 - Springer
Abstract We propose the Square Attack, a score-based black-box l_2 l 2-and l_ ∞ l∞-
adversarial attack that does not rely on local gradient information and thus is not affected by …

Natural adversarial examples

D Hendrycks, K Zhao, S Basart… - Proceedings of the …, 2021 - openaccess.thecvf.com
We introduce two challenging datasets that reliably cause machine learning model
performance to substantially degrade. The datasets are collected with a simple adversarial …

Measuring robustness to natural distribution shifts in image classification

R Taori, A Dave, V Shankar, N Carlini… - Advances in …, 2020 - proceedings.neurips.cc
We study how robust current ImageNet models are to distribution shifts arising from natural
variations in datasets. Most research on robustness focuses on synthetic image …

Inception transformer

C Si, W Yu, P Zhou, Y Zhou… - Advances in Neural …, 2022 - proceedings.neurips.cc
Recent studies show that transformer has strong capability of building long-range
dependencies, yet is incompetent in capturing high frequencies that predominantly convey …