A comprehensive survey on transfer learning

F Zhuang, Z Qi, K Duan, D **, Y Zhu… - Proceedings of the …, 2020 - ieeexplore.ieee.org
Transfer learning aims at improving the performance of target learners on target domains by
transferring the knowledge contained in different but related source domains. In this way, the …

Applications of machine learning to machine fault diagnosis: A review and roadmap

Y Lei, B Yang, X Jiang, F Jia, N Li, AK Nandi - Mechanical systems and …, 2020 - Elsevier
Intelligent fault diagnosis (IFD) refers to applications of machine learning theories to
machine fault diagnosis. This is a promising way to release the contribution from human …

A survey on deep transfer learning

C Tan, F Sun, T Kong, W Zhang, C Yang… - Artificial Neural Networks …, 2018 - Springer
As a new classification platform, deep learning has recently received increasing attention
from researchers and has been successfully applied to many domains. In some domains …

MIC: Masked image consistency for context-enhanced domain adaptation

L Hoyer, D Dai, H Wang… - Proceedings of the IEEE …, 2023 - openaccess.thecvf.com
In unsupervised domain adaptation (UDA), a model trained on source data (eg synthetic) is
adapted to target data (eg real-world) without access to target annotation. Most previous …

Moment matching for multi-source domain adaptation

X Peng, Q Bai, X **a, Z Huang… - Proceedings of the …, 2019 - openaccess.thecvf.com
Conventional unsupervised domain adaptation (UDA) assumes that training data are
sampled from a single domain. This neglects the more practical scenario where training data …

Do we really need to access the source data? source hypothesis transfer for unsupervised domain adaptation

J Liang, D Hu, J Feng - International conference on machine …, 2020 - proceedings.mlr.press
Unsupervised domain adaptation (UDA) aims to leverage the knowledge learned from a
labeled source dataset to solve similar tasks in a new unlabeled domain. Prior UDA …

Deep visual domain adaptation: A survey

M Wang, W Deng - Neurocomputing, 2018 - Elsevier
Deep domain adaptation has emerged as a new learning technique to address the lack of
massive amounts of labeled data. Compared to conventional methods, which learn shared …

Conditional adversarial domain adaptation

M Long, Z Cao, J Wang… - Advances in neural …, 2018 - proceedings.neurips.cc
Adversarial learning has been embedded into deep networks to learn disentangled and
transferable representations for domain adaptation. Existing adversarial domain adaptation …

[PDF][PDF] The computational limits of deep learning

NC Thompson, K Greenewald, K Lee… - arxiv preprint arxiv …, 2020 - assets.pubpub.org
Deep learning's recent history has been one of achievement: from triumphing over humans
in the game of Go to world-leading performance in image classification, voice recognition …

A review of the application of deep learning in intelligent fault diagnosis of rotating machinery

Z Zhu, Y Lei, G Qi, Y Chai, N Mazur, Y An, X Huang - Measurement, 2023 - Elsevier
With the rapid development of industry, fault diagnosis plays a more and more important role
in maintaining the health of equipment and ensuring the safe operation of equipment. Due to …