[HTML][HTML] The variational quantum eigensolver: a review of methods and best practices
The variational quantum eigensolver (or VQE), first developed by Peruzzo et al.(2014), has
received significant attention from the research community in recent years. It uses the …
received significant attention from the research community in recent years. It uses the …
Matrix product states and projected entangled pair states: Concepts, symmetries, theorems
The theory of entanglement provides a fundamentally new language for describing
interactions and correlations in many-body systems. Its vocabulary consists of qubits and …
interactions and correlations in many-body systems. Its vocabulary consists of qubits and …
The randomized measurement toolbox
Programmable quantum simulators and quantum computers are opening unprecedented
opportunities for exploring and exploiting the properties of highly entangled complex …
opportunities for exploring and exploiting the properties of highly entangled complex …
Predicting many properties of a quantum system from very few measurements
Predicting the properties of complex, large-scale quantum systems is essential for
develo** quantum technologies. We present an efficient method for constructing an …
develo** quantum technologies. We present an efficient method for constructing an …
Neural-network quantum state tomography
The experimental realization of increasingly complex synthetic quantum systems calls for the
development of general theoretical methods to validate and fully exploit quantum resources …
development of general theoretical methods to validate and fully exploit quantum resources …
Quantum simulation and computing with Rydberg-interacting qubits
Arrays of optically trapped atoms excited to Rydberg states have recently emerged as a
competitive physical platform for quantum simulation and computing, where high-fidelity …
competitive physical platform for quantum simulation and computing, where high-fidelity …
Computational advantage of quantum random sampling
Quantum random sampling is the leading proposal for demonstrating a computational
advantage of quantum computers over classical computers. Recently the first large-scale …
advantage of quantum computers over classical computers. Recently the first large-scale …
Learning quantum systems
The future development of quantum technologies relies on creating and manipulating
quantum systems of increasing complexity, with key applications in computation, simulation …
quantum systems of increasing complexity, with key applications in computation, simulation …
Topological order from measurements and feed-forward on a trapped ion quantum computer
Quantum systems evolve in time in one of two ways: through the Schrödinger equation or
wavefunction collapse. So far, deterministic control of quantum many-body systems in the …
wavefunction collapse. So far, deterministic control of quantum many-body systems in the …
Quantum computing for high-energy physics: State of the art and challenges
Quantum computers offer an intriguing path for a paradigmatic change of computing in the
natural sciences and beyond, with the potential for achieving a so-called quantum …
natural sciences and beyond, with the potential for achieving a so-called quantum …