A review of recurrent neural networks: LSTM cells and network architectures

Y Yu, X Si, C Hu, J Zhang - Neural computation, 2019 - direct.mit.edu
Recurrent neural networks (RNNs) have been widely adopted in research areas concerned
with sequential data, such as text, audio, and video. However, RNNs consisting of sigma …

[HTML][HTML] A comparative analysis of K-nearest neighbor, genetic, support vector machine, decision tree, and long short term memory algorithms in machine learning

M Bansal, A Goyal, A Choudhary - Decision Analytics Journal, 2022 - Elsevier
Abstract Machine learning (ML) is a new-age thriving technology, which facilitates
computers to read and interpret from the previously present data automatically. It makes use …

Deep neural networks and tabular data: A survey

V Borisov, T Leemann, K Seßler, J Haug… - IEEE transactions on …, 2022 - ieeexplore.ieee.org
Heterogeneous tabular data are the most commonly used form of data and are essential for
numerous critical and computationally demanding applications. On homogeneous datasets …

Convit: Improving vision transformers with soft convolutional inductive biases

S d'Ascoli, H Touvron, ML Leavitt… - International …, 2021 - proceedings.mlr.press
Convolutional architectures have proven extremely successful for vision tasks. Their hard
inductive biases enable sample-efficient learning, but come at the cost of a potentially lower …

An empirical evaluation of generic convolutional and recurrent networks for sequence modeling

S Bai, JZ Kolter, V Koltun - arxiv preprint arxiv:1803.01271, 2018 - arxiv.org
For most deep learning practitioners, sequence modeling is synonymous with recurrent
networks. Yet recent results indicate that convolutional architectures can outperform …

Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network

A Sherstinsky - Physica D: Nonlinear Phenomena, 2020 - Elsevier
Because of their effectiveness in broad practical applications, LSTM networks have received
a wealth of coverage in scientific journals, technical blogs, and implementation guides …

Neural architecture search: A survey

T Elsken, JH Metzen, F Hutter - Journal of Machine Learning Research, 2019 - jmlr.org
Deep Learning has enabled remarkable progress over the last years on a variety of tasks,
such as image recognition, speech recognition, and machine translation. One crucial aspect …

[BOOK][B] Neural networks and deep learning

CC Aggarwal - 2018 - Springer
“Any AI smart enough to pass a Turing test is smart enough to know to fail it.”–*** Ian
McDonald Neural networks were developed to simulate the human nervous system for …

[HTML][HTML] A state-of-the-art survey on deep learning theory and architectures

MZ Alom, TM Taha, C Yakopcic, S Westberg, P Sidike… - electronics, 2019 - mdpi.com
In recent years, deep learning has garnered tremendous success in a variety of application
domains. This new field of machine learning has been growing rapidly and has been …

[HTML][HTML] FakeBERT: Fake news detection in social media with a BERT-based deep learning approach

RK Kaliyar, A Goswami, P Narang - Multimedia tools and applications, 2021 - Springer
In the modern era of computing, the news ecosystem has transformed from old traditional
print media to social media outlets. Social media platforms allow us to consume news much …