Monotonicity of the quantum relative entropy under positive maps

A Müller-Hermes, D Reeb - Annales Henri Poincaré, 2017 - Springer
We prove that the quantum relative entropy decreases monotonically under the application
of any positive trace-preserving linear map, for underlying separable Hilbert spaces. This …

Constraining quantum fields using modular theory

N Lashkari - Journal of High Energy Physics, 2019 - Springer
A bstract Tomita-Takesaki modular theory provides a set of algebraic tools in quantum field
theory that is suitable for the study of the information-theoretic properties of states. For every …

Quantum f-divergences in von Neumann Algebras

F Hiai - Math. Phys. Stud., Springer, Singapore, 2021 - Springer
After I wrote in 1981 the joint paper [61] with M. Tsukada and M. Ohya on sufficiency of von
Neumann subalgebras and the relative entropy in a specialized situation, I wanted to extend …

Approximate recovery and relative entropy I: general von Neumann subalgebras

T Faulkner, S Hollands, B Swingle, Y Wang - … in Mathematical Physics, 2022 - Springer
We prove the existence of a universal recovery channel that approximately recovers states
on a von Neumann subalgebra when the change in relative entropy, with respect to a fixed …

Geometric relative entropies and barycentric Rényi divergences

M Mosonyi, G Bunth, P Vrana - Linear Algebra and its Applications, 2024 - Elsevier
We give systematic ways of defining monotone quantum relative entropies and (multi-
variate) quantum Rényi divergences starting from a set of monotone quantum relative …

Rényi Relative Entropies and Noncommutative -Spaces

A Jenčová - Annales Henri Poincaré, 2018 - Springer
We propose an extension of the sandwiched Rényi relative α α-entropy to normal positive
functionals on arbitrary von Neumann algebras, for the values α> 1 α> 1. For this, we use …

-logarithmic negativity

X Wang, MM Wilde - Physical Review A, 2020 - APS
The logarithmic negativity of a bipartite quantum state is a widely employed entanglement
measure in quantum information theory due to the fact that it is easy to compute and serves …

Quantum -divergences via Nussbaum–Szkoła distributions and applications to -divergence inequalities

G Androulakis, TC John - Reviews in Mathematical Physics, 2024 - World Scientific
The main result in this paper shows that the quantum f-divergence of two states is equal to
the classical f-divergence of the corresponding Nussbaum–Szkoła distributions. This …

Relative entropy for von Neumann subalgebras

L Gao, M Junge, N LaRacuente - International Journal of …, 2020 - World Scientific
We revisit the connection between index and relative entropy for an inclusion of finite von
Neumann algebras. We observe that the Pimsner–Popa index connects to sandwiched p …

Quantum f-divergences in von Neumann algebras. I. Standard f-divergences

F Hiai - Journal of Mathematical Physics, 2018 - pubs.aip.org
We make a systematic study of standard f-divergences in general von Neumann algebras.
An important ingredient of our study is to extend Kosaki's variational expression of the …