[HTML][HTML] Enhanced sampling with machine learning

S Mehdi, Z Smith, L Herron, Z Zou… - Annual Review of …, 2024 - annualreviews.org
Molecular dynamics (MD) enables the study of physical systems with excellent
spatiotemporal resolution but suffers from severe timescale limitations. To address this …

Unsupervised learning methods for molecular simulation data

A Glielmo, BE Husic, A Rodriguez, C Clementi… - Chemical …, 2021 - ACS Publications
Unsupervised learning is becoming an essential tool to analyze the increasingly large
amounts of data produced by atomistic and molecular simulations, in material science, solid …

A suite of tutorials for the WESTPA rare-events sampling software [Article v1. 0]

AT Bogetti, B Mostofian, A Dickson… - Living journal of …, 2019 - pmc.ncbi.nlm.nih.gov
The weighted ensemble (WE) strategy has been demonstrated to be highly efficient in
generating pathways and rate constants for rare events such as protein folding and protein …

Markov state models: From an art to a science

BE Husic, VS Pande - Journal of the American Chemical Society, 2018 - ACS Publications
Markov state models (MSMs) are a powerful framework for analyzing dynamical systems,
such as molecular dynamics (MD) simulations, that have gained widespread use over the …

Machine learning of coarse-grained molecular dynamics force fields

J Wang, S Olsson, C Wehmeyer, A Pérez… - ACS central …, 2019 - ACS Publications
Atomistic or ab initio molecular dynamics simulations are widely used to predict
thermodynamics and kinetics and relate them to molecular structure. A common approach to …

VAMPnets for deep learning of molecular kinetics

A Mardt, L Pasquali, H Wu, F Noé - Nature communications, 2018 - nature.com
There is an increasing demand for computing the relevant structures, equilibria, and long-
timescale kinetics of biomolecular processes, such as protein-drug binding, from high …

PyEMMA 2: A software package for estimation, validation, and analysis of Markov models

MK Scherer, B Trendelkamp-Schroer… - Journal of chemical …, 2015 - ACS Publications
Markov (state) models (MSMs) and related models of molecular kinetics have recently
received a surge of interest as they can systematically reconcile simulation data from either …

Time-lagged autoencoders: Deep learning of slow collective variables for molecular kinetics

C Wehmeyer, F Noé - The Journal of chemical physics, 2018 - pubs.aip.org
Inspired by the success of deep learning techniques in the physical and chemical sciences,
we apply a modification of an autoencoder type deep neural network to the task of …

Deeptime: a Python library for machine learning dynamical models from time series data

M Hoffmann, M Scherer, T Hempel… - Machine Learning …, 2021 - iopscience.iop.org
Generation and analysis of time-series data is relevant to many quantitative fields ranging
from economics to fluid mechanics. In the physical sciences, structures such as metastable …

Machine learning force fields and coarse-grained variables in molecular dynamics: application to materials and biological systems

P Gkeka, G Stoltz, A Barati Farimani… - Journal of chemical …, 2020 - ACS Publications
Machine learning encompasses tools and algorithms that are now becoming popular in
almost all scientific and technological fields. This is true for molecular dynamics as well …